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Abstract. We consider a semi-Riemannian metric whose associated
geodesic flow either contains a non-hyperbolic periodic orbit or has in-
finitely many hyperbolic periodic orbits. Under some conditions, we
show that the metric can be C2-perturbed such that the geodesic flow ex-
hibits positive topological entropy, there are infinitely many non-lightlike
closed geodesics, and their number grows exponentially with respect to
the length.
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1. Introduction

Semi-Riemannian geometry extends Riemannian geometry by relaxing
the requirement that the metric has to be positive definite. In this broader
framework, many geometric structures remain valid. However, certain re-
sults, such as those related to the geodesic flow, object of this work, do not
carry over as easily. For instance, in Riemannian geometry, the Lyusternik-
Fet theorem guarantees the existence of closed geodesics on closed manifolds.
On surfaces, the number of closed geodesics is infinite, and in higher dimen-
sions, this holds generically, as shown by Rademacher’s theorem.

In contrast, the semi-Riemannian case presents a more complex picture
(cf. [12]). We mention here some results for the particular case of Lorentzian
metrics. For closed orientable Lorentzian surfaces, it has been proven that
at least two simple closed geodesics exist, one of which is either timelike
or spacelike [28]. There are examples of surfaces that only have those two
closed geodesics. For the other surfaces, whether additional closed geodesics
exist remains an open question, as does the case for Lorentzian manifolds in
dimensions greater or equal than three (see [17, 12] and references therein
for some partial results).

In the following, we demonstrate that the existence of even one elliptic
closed geodesic is sufficient to find a nearby metric with infinitely many
closed geodesics. This results from the presence of a hyperbolic set, which
introduces significant dynamical complexity, as indicated by positive topo-
logical entropy. A similar conclusion holds under some conditions if the
number of hyperbolic closed geodesics is infinite. Note that periodic orbits
of the geodesic flow project to closed geodesics on the manifold.
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Theorem 1.1. If the geodesic flow of a C2 semi-Riemannian complete met-
ric on a smooth closed manifold has a quasi-elliptic periodic orbit, then the
metric can be C∞-perturbed such that it has a non-trivial non-lightlike hy-
perbolic basic set.

Starting with a non-hyperbolic non-lightlike periodic orbit, we can use the
version of Franks’ lemma for semi-Riemannian metrics (see Theorem 3.6) to
reduce to the previous case.

Corollary 1.2. If the metric has a non-hyperbolic non-lightlike periodic
orbit, then it can be C2-perturbed such that it has a non-trivial non-lightlike
hyperbolic basic set.

We now deal with the case of hyperbolic periodic orbits. Notice that if
they are lightlike, by hyperbolic stability there are also non-lightlike hyper-
bolic periodic orbits.

Let H be the set of C2 semi-Riemannian complete metrics on a smooth
closed manifold whose geodesic flows satisfy the following properties:

(1) all non-lightlike periodic orbits are hyperbolic,
(2) there are infinitely many non-lightlike periodic orbits with infinitely

many different periods.

Denote by F∗ the C2-interior of H.

Theorem 1.3. For any metric in F∗ the closure of the set of periodic orbits
contains a non-trivial non-lightlike hyperbolic basic set.

A C2 semi-Riemannian complete metric belongs to P if its geodesic flow
has a quasi-elliptic periodic orbit, a non-hyperbolic non-lightlike periodic
orbit or it belongs to F∗. The above results imply that any metric in P can
be perturbed to create a non-trivial non-lightlike hyperbolic basic set.

Recall that a non-trivial hyperbolic basic set for the geodesic flow of a
metric g is a hyperbolic, infinite, transitive and locally maximal set (see
e.g. [21]), which is C2-stable. Such a set contains a transverse homoclinic
point, thus the topological entropy htop(g) is positive and there are infinitely
many periodic orbits. Moreover, the number of periodic orbits grows expo-
nentially with the period (cf. [21, Theorem 18.5.1]). By the relation between
the period T of the periodic orbit of the geodesic flow and the length of a
closed non-lightlike geodesic γ(t), t ∈ [0, T ],

ℓg(γ) =

∫ T

0

√
|g(γ̇(t), γ̇(t))| dt,

we have the following consequence.

Corollary 1.4. Any metric g ∈ P can be C2-approximated by a C2 semi-
Riemannian metric g̃ such that

lim
T→+∞

1

T
logP (T ) > 0,

where P (T ) is the number of non-lightlike closed geodesics γ of g̃ with
ℓg̃(γ) ≤ T .
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The proofs of the theorems above follow the foundational ideas of Contr-
eras and Paternain [16] for geodesic flows on Riemannian surfaces, as well
as the significant advancement presented in [14], which extends these results
to arbitrary Riemannian manifolds. A similar result was later obtained for
billiard maps in bodies [3], and more recently, an analogous version was
established for Tonelli Lagrangians [15].

In Section 2, we review some concepts of semi-Riemannian manifolds and
their associated geodesic flows. Section 3 discusses four key perturbative
results: the bumpy metric theorem, the Klingenberg-Takens theorem, the
Kupka-Smale theorem, and Franks’ lemma. We conclude by proving Theo-
rem 1.1 in Section 4 and Theorem 1.3 in Section 5.

2. Preliminaries

2.1. Semi-Riemannian geometry. Let M be a smooth manifold of di-
mension m. A Cr-metric g on M , r ∈ N := {1, 2, . . . }, is a Cr-tensor field of
type (0, 2) such that, for every x ∈ M , the bilinear form gx : TxM×TxM → R
is symmetric, nondegenerate, and the index of gx is the same for all x. Re-
call that the index of gx is the largest dimension of a subspace of TxM on
which gx is negative definite.

We denote by SRr
ν(M) the set of Cr-metrics on M with index ν. Natu-

rally, we also denote

SR∞
ν (M) =

⋂
r∈N

SRr
ν(M).

A semi-Riemannian manifold of class Cr is a pair (M, g), where M is a
smooth manifold and g ∈ SRr

ν(M) for some index ν. If ν = 0, the metric is
called Riemannian, and (M, g) is called a Riemannian manifold. If ν = 1,
the metric is called Lorentzian, and (M, g) is called a Lorentzian manifold.
More details can be found in the literature e.g. [1, 24].

Notice that SRr
0(M) is always non empty as Riemannian metrics always

exist. On the other hand, there are topological obstructions whenever ν ≥ 1,
in particular SRr

ν(M) is empty for some manifolds [?, 7]. On the other hand,
if SRr

ν(M) ̸= ∅ for some r, then SRℓ
ν(M) ̸= ∅ for any ℓ ∈ N (cf. [7]).

If (U, x1, . . . , xm) is a local chart on M , then g can be written as

g = gijdx
i ⊗ dxj ,

where gij = g(∂i, ∂j) ∈ Cr(U) are the components of g on U and ∂i is a
shorthand notation for the coordinate vector fields ∂/∂xi, and we are using
the Einstein’s summation convention. Note that, since g is nondegenerate,
the matrix [gij(x)] is invertible for all x ∈ U . If we denote its inverse by
[gij(x)], gij are also Cr functions on U .

A vector v ∈ TxM is said to be

• timelike if gx(v, v) < 0;
• lightlike if gx(v, v) = 0 and v ̸= 0;
• spacelike if gx(v, v) > 0 or v = 0.

A curve γ : I → M is called timelike, lightlike or spacelike if γ′(t) is
respectively timelike, lightlike or spacelike, for all t in an interval I. In



4 M. BESSA, J. LOPES DIAS, P. MATIAS, AND M. J. TORRES

particular, a point (x, v) ∈ TM is called timelike, lightlike or spacelike if v
is respectively timelike, lightlike or spacelike.

2.2. The geodesic flow. Fix a C2 semi-Riemannian closed manifold (M, g)
with g ∈ SRr

ν(M) complete. Given a tangent vector v ∈ TxM at a point
x ∈ M , denote by

γx,v : R → M

the geodesic such that γx,v(0) = x and γ̇x,v(0) = v, as in the Riemannian
case, cf. [24]. The geodesic flow of g is the one-parameter family of diffeo-
morphisms on the tangent bundle

φt
g : TM → TM

(x, v) 7→ (γx,v(t), γ̇x,v(t)) .

Since geodesics travel with constant speed it is enough to consider three
energy levels corresponding to positive, zero and negative constant values.
So, for σ = +1, 0 or −1, the σ-tangent bundle is defined by:

Sσ
gM = {(x, v) ∈ TM : gx(v, v) = σ} .

Clearly, each Sσ
gM is preserved by φt

g. Moreover, as M is compact so is
Sσ
gM .
By writing the canonical projection π : Sσ

gM → M , geodesics γ on M lift

to orbits of the geodesic flow π−1γ ⊂ Sσ
gM .

We say that (x, v) in Sσ
gM is a regular point if Xg(x, v) ̸= 0, where

Xg(x, v) :=
d
dtφ

t
g|t=0(x, v) stands for the vector field of the geodesic flow at

(x, v). Given a regular point (x, v), we say that (x, v) is a periodic point of
the geodesic flow φt

g if φt
g(x, v) = (x, v) for some positive t. The smallest

τ > 0 satisfying the condition above is called the period of (x, v). In this
case, we say that the orbit of (x, v) is a periodic orbit of period τ . The
projection on M of a periodic orbit is called a closed geodesic.

Notice that nontrivial closed geodesics on M for g are in one-to-one cor-
respondence with the periodic orbits of φt

g except for the case of lightlike
geodesics. In fact, one could have a closed geodesic γ, i.e. γ(a) = γ(b), with
γ̇(a) = λγ̇(b) and λ ̸= 1. This is allowed since g(γ̇, γ̇) = 0 if the geodesic is
lightlike. So, this closed geodesic does not correspond to a periodic orbit.
We refer to [2] for more on closed geodesics in the semi-Riemannian setting.

It is widely known that the geodesic flow is the Hamiltonian flow of the
Hamiltonian function (x, v) 7→ 1

2gx(v, v) on TM for a symplectic form de-
pending on g. This is related by the Legendre transform to a similar Hamil-
tonian function on the cotangent bundle T ∗M with the symplectic form
which does not depend on the metric.

2.3. Periodic points. A transversal Σ to the geodesic flow at a regular
point (x, v) in Sσ

gM is a (2m− 2)-dimensional smooth symplectic submani-
fold satisfying

T(x,v)S
σ
gM = T(x,v)Σ+ RXg(x, v). (2.1)

Consider a C1-family of transversals Σt := Σt(x, v) to the flow at φt
g(x, v),

t ≥ 0, and neighborhoods Ut ⊂ Sσ
gM of (x, v). The transversal Poincaré
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flow of g at (x, v) is defined to be the family of C1-symplectomorphisms

P t
g : Σ0 ∩ Ut → Σt

given by P t
g(y, u) = φ

Θ(y,u,t)
g (y, u) with

Θ(y, u, t) = min{s ≥ 0: φs
g(y, u) ∈ Σt}.

We assume that Ut is sufficiently small such that, by the implicit function
theorem, Θ is C1 and Θ(Ut, t) is bounded for a fixed t > 0.

The transversal linear Poincaré flow of g at (x, v) is the derivative of P t
g

at (x, v),

DP t
g(x, v) : T(x,v)Σ0 → Tφt

g(x,v)
Σt.

Given a C2-metric g and a φt
g-invariant, compact and regular set Λ ⊂

Sσ
gM , we say that Λ is uniformly hyperbolic if there exist θ ∈ (0, 1) and

η > 0 and a DP t
g-invariant splitting Es

Λ ⊕ Eu
Λ of TΣΛ such that for any

(x, v) ∈ Λ we have

∥DP η
g (x, v)|Es

(x,v)
∥ ≤ θ and ∥DP−η

g (φη
g(x, v))|Eu

φ
η
g (x,v)

∥ ≤ θ.

Notice that this notion should refer to the tangent map Dφt
g. However,

as proven in [4] for Hamiltonian flows (hence also for geodesic flows), it is
enough to deal with the associated transversal linear Poincaré flow.

When (x, v) is periodic of period τ > 0 we call P τ
g the Poincaré map

and Σ0 the Poincaré section. The periodic point is degenerate if DP τ
g (x, v)

has an eigenvalue which is a root of unity. That is, 1 is an eigenvalue of
DP kτ

g (x, v) for some k ∈ Z. So, if e2πiλ is an eigenvalue, then λ ∈ Q. If
all eigenvalues of DP τ

g (x, v) are ±1, it is called parabolic. A metric is called
bumpy if all the periodic points are non-degenerate.

It is simple to check that non-degenerate periodic orbits are isolated in
the σ-tangent bundle. Moreover, these orbits persist under perturbation of
the metric. The same holds for the projected closed geodesics.

The periodic point (x, v) is called hyperbolic if its orbit is a uniformly
hyperbolic set. This means that all the eigenvalues of DP τ

g (x, v) are outside
the unit circle. Recall that the eigenvalues are independent of the choice of
the transversal and of the point in the periodic orbit.

Finally, the periodic point is q-elliptic if it is non-degenerate and non-
hyperbolic and DP τ

g (x, v) has exactly 2q non-real eigenvalues with modulus
1, 1 ≤ q ≤ m − 1. The remaining eigenvalues have norm different from 1.
When q = m − 1 we call it totally elliptic. Notice that, from the above, a
bumpy metric only has hyperbolic or q-elliptic periodic orbits.

2.4. Invariant manifolds. Consider any distance d on Sσ
gM coming from

a Riemannian metric. The stable manifold of the hyperbolic periodic point
(x, v) is the set

W s(x, v) = {(x̃, ṽ) : lim
t→+∞

d(φt
g(x, v), φ

t
g(x̃, ṽ)) = 0}.

Similarly, the unstable manifold is given by

W u(x, v) = {(x̃, ṽ) : lim
t→−∞

d(φt
g(x, v), φ

t
g(x̃, ṽ)) = 0}. (2.2)
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We obtain the weak stable and unstable m-dimensional Lagrangian manifolds
of the orbit θ :=

⋃
t∈R φt

g(x, v) by taking

Wws(θ) =
⋃
t∈R

φt
g(W

s(x, v)) and Wwu(θ) =
⋃
t∈R

φt
g(W

u(x, v)).

Given two hyperbolic periodic points (x1, v1), (x2, v2) ∈ Sσ
gM with or-

bits θ1 and θ2, as both Wws(θ1) and Wwu(θ2) are contained in a (2m− 1)-
dimensional manifold, we may wonder whether their intersection is transver-
sal.

We say (x, v) ∈ Wws(θ1)∩Wwu(θ2) is a heteroclinic point. It is transversal
if

T(x,v)W
ws(θ1) + T(x,v)W

ws(θ2) = T(x,v)S
σ
gM. (2.3)

If θ1 = θ2 we call it homoclinic point.
Using (2.1) we rewrite (2.3) as

T(x,v)W
s(θ1) + T(x,v)W

s(θ2) + RXg(x, v) = T(x,v)S
σ
gM.

We say thatWws(θ1) andWwu(θ2) intersect transversally, denoted byWws(θ1) ⋔
Wwu(θ2), when all the points in Wws(θ1) ∩ Wwu(θ2) are transversal. As
common practice, when Wws(θ1) ∩ Wwu(θ2) = ∅ we also say that both
submanifolds intersect transversally.

3. Perturbative lemmas for semi-Riemannian metrics

3.1. Cr-topology. Given a closed manifold M such that SRr
ν(M) is non-

empty, we fix an atlas

{(Uℓ, φℓ) : ℓ ∈ I}.
Recall the Whitney Cr topology, r ∈ N, given by the norm

∥g∥Cr = max
0≤r′≤r

max
ℓ∈I

max
x∈φℓ(Uℓ)

max
1≤i,j≤m

∥Dr′(gij ◦ φ−1
ℓ )(x)∥

for any g in SRr
ν(M), which is therefore a Baire space.

The union of the Cr-open sets of SR∞
ν (M) for r ∈ N form a basis for the

Whitney C∞-topology, making this also a Baire space.

3.2. Bumpy metric theorem. Fixing any τ > 0, it is known that for an
open and dense subset of semi-Riemannian metrics, the geodesic flow yields
only elliptic or hyperbolic periodic ponts with period less than τ (see below).
This is a consequence of the semi-Riemannian bumpy metric theorem:

Theorem 3.1. [8, Theorem 3.14] The set of bumpy semi-Riemannian met-
rics (i.e. all periodic points are non-degenerate) is generic in SRr

ν(M),
r ≥ 2.

Corollary 3.2. There exists a residual set O ⊂ SRr
ν(M) such that for

g ∈ O and any τ > 0, the set of periodic orbits of φg on Sσ
gM with period

≤ τ is finite.

Proof. Suppose there are infinite periodic orbits with period ≤ τ . Take a
point in each of these periodic orbits. Since Sσ

gM is compact, there is an
accumulation point. This point sits in a periodic orbit because the orbits of
the approximating periodic orbits are all bounded by τ . Therefore, there is
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a non isolated periodic orbit which is degenerate. Theorem 3.1 completes
the proof. □

3.3. Klingenberg-Takens theorem. The Klingenberg-Takens theorem for
semi-Riemannian geodesic flows gives a way to perturb semi-Riemannian
metrics in order that the jets of Poincaré maps of closed orbits belong to
a given invariant open dense set. This allows us to conclude that generi-
cally the 1-jets of Poincaré maps of periodic orbits are hyperbolic or elliptic.
Moreover, it allows also the use of the third derivative of the map (3-jet)
to establish the weakly monotonous property, crucial to study the local be-
haviour of weakly monotonous elliptic points. This plays a major role in the
proof of Theorem 1.1.

Given r ∈ N the set of r-jets at 0 and fixing 0 formed by symplectic
automorphisms of Rm−1 ⊕ Rm−1 is denoted by Jr

s (m − 1). We say that
Q ⊂ Jr

s (m − 1) is invariant if σQσ−1 = Q for all σ ⊂ Jr
s (m − 1) which is

invertible. In brief terms linearized Poincaré maps are 1-jets J1
s (m− 1) and

also elements of the Lie group Sp(m− 1,R).
We present below the semi-Riemannian version of the Klingenberg-Takens

theorem:

Theorem 3.3. [8, Corollary 4.2] Let r ∈ N be fixed and let Q be a dense
open and invariant subset of Jr

s (m − 1). Then, for every ℓ > r or ℓ = ∞,
the set MQ of all metrics g ∈ SRℓ

ν(M) such that:

(i) all closed geodesics are non-lightlike and non-degenerate,
(ii) given any closed geodesic γ, the rth jet of the associated Poincaré

map Pg belongs to Q,

is generic in SRℓ
ν(M).

3.4. Kupka-Smale theorem. The classic Kupka-Smale theorem is a generic
result displaying two parts. It first states that periodic orbits are hyperbolic
or elliptic. Recall that hyperbolic periodic orbits of φt

g exhibit a decompo-
sition of the tangent bundle into two Lagrangian m-dimensional subspaces
(section 2.4). In addition, it says that all heteroclinic points of hyperbolic
periodic orbits are transversal.

The theorem is mainly a result about transversality of submanifolds. The
first part follows from Theorem 3.3 since Q can be obtained from the linear
symplectic matricial theory which states that hyperbolic and elliptic matri-
ces are open and dense among the symplectic ones. So, we are left to prove
the following statement on transversal heteroclinic intersections.

Theorem 3.4. For a Cr-residual set R ⊂ SRr
ν(M), r ≥ 2 or r = ∞, all

heteroclinic points of hyperbolic periodic orbits are transversal.

The rest of this section is dedicated to the proof of Theorem 3.4.
Let Kr

N ⊂ SRr
ν(M) be the subset of semi-Riemannian metrics such that

given two hyperbolic periodic points γ and η with period ≤ N , we have

Wws
N (γ) ⋔ Wwu

N (η) ̸= ∅,
where Wws

N (γ) is given by those points θ ∈ Wws(γ) with dWws(γ)(θ, γ) < N
(analogous definition for Wwu

N (η)). By Corollary 3.2, generically there are
only a finite number of those hyperbolic periodic points.
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Since the stable and unstable manifolds of a periodic orbit depend con-
tinuously on compact parts in the C1 topology, we conclude that Kr

N is an
open subset of SRr

ν(M). If we prove that Kr
N is a dense subset of SRr

ν(M),
then the residual subset of Theorem 3.4 is defined by

R =
⋂
N∈N

Kr
N .

The proof that Kr
N is dense in SRr

ν(M) follows the same lines of [16]
where the fundamental key ingredient is the construction of a local per-
turbation of the metric that guarantees the transversality [16, Lemma 2.6].
Since that lemma cannot be applied to our semi-Riemannian context, we
use Lemma 3.5 below instead, which completes the proof of Theorem 3.4.

Lemma 3.5. Let g ∈ SRr
ν(M), r ∈ N ∪ {∞}, with hyperbolic periodic or-

bits γ and η in Sσ
gM , σ ∈ {+1, 0,−1} and θ ∈ W u(γ). If the projection π

of W u(γ) is a diffeomorphism in a neighborhood of θ, for every sufficiently
small neighborhoods θ ∈ V ⊂ V ⊂ U ⊂ Sσ

gM such that π(U) does not inter-
sect any closed geodesic of period ≤ N , we can find g ∈ SRr

ν(M) verifying

(1) g is arbitrarly Cr-close to g,
(2) g = g outside π(U),
(3) γ and η are still periodic orbits for g,
(4) the connected component of W u

N (γ)∩ V containing θ and W s(η) are
transversal.

Proof. We follow closely the proof of [16, Lemma 2.6], focusing on the dif-
ferences coming from the semi-Riemannian setting.

Locally around θ in the unstable manifold of γ, using the Legendre trans-
form, the geodesic flow is the Hamiltonian flow in the form H(x, y) =
1
2g

ij(x)yiyj defined in the cotangent bundle T ∗M with the canonical sym-
plectic form

∑
dxi ∧ dyi.

The matrix G = [gij ] is symmetric but might not be positive definite.
If so, consider the eigenvalues λi which can be positive or negative. Thus,
there are symmetric matrices G1, G2 > 0 such that G = G1 −G2 (just take
G1 = G+tI, G2 = tI, both symmetric, with t > 0 such that G1 > 0 because
its eigenvalues are λi+ t which are all greater than zero for sufficiently large
t). Therefore, H = H1 −H2 with Hk(x, y) =

1
2y

TGk(x)y, k = 1, 2, that is
positive for y ̸= 0.

Recall that θ ∈ H−1(σ/2). As in [16, Lemma 2.6] we want to perturb
the metric in π(U) so that W u(γ) becomes the graph G of the one-form
p : π(U) → T ∗

π(U)M and there is no perturbation to the periodic orbits.

Let αk = Hk(θ) and thus α1 − α2 = σ/2. Take Ḡ = [ḡij ] where

ḡij(x) =
α1

H1(x, p(x))
gij1 (x)−

α2

H2(x, p(x))
gij2 (x), x ∈ π(U),

and ḡij(x) = gij(x) otherwise. Notice that ḡij is Cr-close to gij from the
closeness of G and W u(γ), as we only need to estimate ∥Hk(·, p(·))−αk∥Cr .
Therefore, by relating the norm of the difference of the inverse matrices, ḡ is
Cr-close to g. The perturbed Hamiltonian is H̄ = H̄1 − H̄2 with H̄k(x, y) =
1
2y

T Ḡk(x)y.
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Finally, G is inside the energy level set since

H̄(x, p(x)) = H̄1(x, p(x))− H̄2(x, p(x)) = α1 − α2 = σ/2.

Moreover, G is a Lagragian submanifold, hence it is invariant by [16, Lemma
A.1]. □

3.5. Franks’ lemma. The original Franks’ lemma asserts that perturba-
tions of the derivative of a diffeomorphism at a finite set can be realized
as derivatives of a C1-close diffeomorphism. The C1 setting is crucial, as
the result no longer holds in the C2 topology [25]. First proved by John
Franks in [18, Lemma 1.1], this lemma has become an essential tool for es-
tablishing many fundamental results in the stability and genericity theories
of dynamical systems.

The first version of Franks’ lemma for geodesic flows appeared in [14], with
subsequent extensions provided in [23]. In the context of geodesic flows, the
perturbations are made to the metric, which are inherently non-local in
phase space. This poses a significant challenge, making these adaptations
considerably more difficult to achieve. Similar difficulties arise in the ver-
sions for planar billiards [29] and for billiards in bodies [3].

In this section, we present Franks’ lemma for semi-Riemannian metrics,
whose proof follows a straightforward adaptation of [23, Theorem 1.1], orig-
inally formulated for the Riemannian case.

Let g be any Riemannian metric of M . We use it to define a tubular
neighborhood in M with radius ρ > 0 of a curve Γ:

Cg(Γ, ρ) = {x ∈ M : dg(x,Γ) < ρ}.
Notice that in [23] g = g since both are Riemannian, whilst in our present
setting we need to distinguish them.

Theorem 3.6 (Franks’ lemma for semi-Riemannian metrics). Let (M, g) be
a smooth compact semi-Riemannian manifold of dimension ≥ 2. For every
T > 0 there exists δT , τT ,KT > 0 such that the following holds. For every
non-lightlike geodesic γθ : [0, T ] → M we can find t ∈ [0, T − τT ] and ρ > 0
with

Cg
(
γθ([t, t+ τT ]), ρ

)
∩ γθ([0, T ]) = γθ((t, t+ τT )),

such that for every 0 < δ < δT for each A ∈ Sp(m− 1) satisfying

∥A− Pg(γ)(T )∥ < δ

and for every 0 < ρ < ρ there exists a C∞ semi-Riemannian metric h on
M that is conformal to g in the form h = eβg with β ∈ C∞(M), such that:

(1) γθ : [0, T ] → M is still a non-lightlike geodesic of (M,h),
(2) Supp(β) ⊂ Cg

(
γθ([t, t+ τT ]), ρ

)
,

(3) ∥eβ − 1∥C2 < KT

√
δ,

(4) Ph(γθ)(T ) = A.

The proof in [23] relies on an abstract control theory result [23, Propo-
sition 2.4] that is applied to the Jacobi equation. For semi-Riemannian
metrics we also obtain the Jacobi equation since all the involved geometric
structures are also valid in this more general context (cf. [24]). On the other
hand, the above result is restricted to non-lightlike geodesics, because Fermi
coordinates are only available for such geodesics.
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4. Proof of Theorem 1.1

In this section we show that if there is an elliptic periodic orbit, then
there is a C∞-perturbation of the metric so that the geodesic flow has a
horseshoe. This is done by considering Kupka-Smale metrics and reducing
the dimension of the problem using a general result by Contreras, Herman
and Arnaud for symplectic twist maps associated to the Poincaré map. This
shows the existence of a transversal heteroclinic orbit. We follow closely [14]
as the adaptation only requires the use of the version of the Klingenberg-
Takens theorem for semi-Riemannian metrics (Theorem 3.3).

Take a q-elliptic periodic point. If it is lightlike, by persistency of elliptic
periodic points, there is a nearby non-lightlike q-elliptic periodic point (x, v).
Let P t

g be the transversal Poincaré flow of g ∈ SRr
ν(M), r ∈ {2, 3, . . . ,∞}, at

(x, v). We restrict it to the center manifoldW c(x, v) in a small enough neigh-
borhood of (x, v). In appropriate coordinates, it is a Cr−1-diffeomorphism
f : R2q → R2q preserving the canonical symplectic form ω0 and fixing the
origin. If the origin is 4-elementary, then we say that (x, v) is a 4-elementary
totally elliptic fixed point. So, using the Birkhoff normal form, if (x, v) is
weakly monotonous, then this symplectomorphism can be conjugated to a
weakly monotonous (twist) map on Tq × Rq. Notice that this is related to
the 3-jet of the map, so by Theorem 3.3 we obtain the following.

Proposition 4.1. There is a C∞-residual set R1 ⊂ SR2
ν(M) such that for

any g ∈ R1 any periodic orbit is either hyperbolic or 4-elementary weakly
monotonous nonlightlike q-elliptic for some 1 ≤ q ≤ d.

We now find conditions for the existence of a 1-elliptic periodic point
nearby a q-elliptic one. This follows from the fact that the Birkhoff normal
form can be put in new coordinates so that it is C1-close to a weakly mo-
notonous completely integrable exact symplectomorphism on a strip around
Tq × {0} (cf. [14]). We can now apply the following result.

Theorem 4.2 ([14, Theorem 4.1]). If F : Tq × Rq → Tq × Rq is a Kupka-
Smale weakly monotonous exact C4-symplectomorphism C1-close to a com-
pletely integrable symplectomorphism, then it has a 1-elliptic periodic point
and a nontrivial hyperbolic set near Tq × {0}.

Finally, the above discussion completes the goal of this section stated in
the next theorem, and also Theorem 1.1 follows.

Theorem 4.3. Let g ∈ SR5
ν(M) be Kupka-Smale. There is a C∞-perturbation

such that it has a 1-elliptic periodic point and there is a nontrivial hyperbolic
set.

5. Proof of Theorem 1.3

The set of the non-lightlike periodic orbits of the geodesic flow φt
g is de-

noted by Per±(g). Let g ∈ F∗ so that the set Per±(g) contains only hyper-
bolic periodic orbits (see condition (1) of the definition of F∗ in Section 1).

We proceed along the same lines as in [6, 10, 27, 20, 5]. Following [11,
Corollary 2.18] (see also [13]) and the fact that there are infinitely many
different periods (see condition (2) of the definition of F∗), we get the fol-
lowing dichotomy: either there is a uniform dominated splitting on Per±(g),
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or by Franks’ lemma (Theorem 3.6) there is a semi-Riemannian metric with
a non-hyperbolic and non-lightlike periodic orbit. Since this is not allowed
in F∗, Per±(g) exhibits a uniform dominated splitting. Recall that in the
symplectic case this implies that Per±(g) is partially hyperbolic (see e.g. [9,
Theorem 11]).

By restricting the tangent map to the central subspace of the splitting
and employing a Jordan normal form for symplectic matrices [22, 19], we
once again achieve a partially hyperbolic splitting according to the afore-
mentioned dichotomy. This results in an increase in the dimension of the
stable and unstable subspaces of the original tangent map on Per±(g). By
repeating this procedure, we conclude that Per±(g) is indeed hyperbolic,
and the same applies to its closure because of partial hyperbolicity.

According to Smale’s spectral decomposition theorem (see e.g. [26, page
385]), the closure of the set of periodic orbits Λ is a union of finitely many
pairwise disjoint basic hyperbolic sets. Since Λ is infinite, at least one of the
basic sets must be nontrivial.
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