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Abstract. We study the Lyapunov exponents associated to the
product of i.i.d. random linear cocyles in SL(2,R). The existence
of these quantities and conditions to guarantee strict positivity
are established by a celebrated theorem of H. Furstenberg. These
results are used to prove the exponential growth of a random Fi-
bonacci sequence and to give an alternative approach to the study
of Lévy constants in the context of continued fractions.

1. Introduction

One of the goals of this work is to provide a self-contained and acces-
sible introduction to the work of Hillel “Harry” Furstenberg in [10, 9],
which laid the foundation for the study of Lyapunov exponents of ran-
dom linear cocyles. This is a topic which has received a lot of recent at-
tention based on its connection to discrete one-dimensional Schrödinger
operators. This link with the dynamical systems theory turned out to
be very fruitful, leading to many remarkable results, cf. [5, 11, 6].

Lyapunov exponents quantify the exponential norm-growth of a dy-
namical system. If the Lyapunov exponents are positive, it means that
the system displays hyperbolicity and it is often called “chaotic”. This
fact reveals much of the asymptotic and statistical behaviour of the or-
bits. There are very few non-trivial examples for which the positivity
of the Lyapunov exponents is know. Furstenberg theorem gives con-
ditions for this property to hold for products of random matrices and
linear cocycles.

Our presentation of the proof follows the one by Jairo Bochi [2]
which is also inspired in [4]. As such, it is a particular version of the
general result, which instead of SL±(2,R) considers the larger space
SL±(n,R). Another goal of this paper is to include the detail and
background which is often omitted from the literature, thus providing
a gentler presentation of these topics, accessible to a wider audience.
This accounts for the rather lengthy preliminary section. Afterwards,
we formally state the result and establish useful equivalent conditions.
We use these to study the random Fibonacci sequence, and prove that
its associated Lyapunov exponent is positive.
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Our last goal, in the final section, is to present a novel application
of Furstenberg’s theorem to a number theoretical problem. We find a
direct connection between Lyapunov exponents of random linear co-
cycles and Lévy constants for the growth of rational approximants in
continued fractions. We believe that this relation could be useful to ob-
tain new results. In particular, the recent advances in questions about
the regularity of Lyapunov exponents with respect to the distribution
of the stochastic iid process underneath, could lead to further insights
on the regularity of the Lévy constants.

2. Preliminaries

Let (Ω,F , ρ) be a probability space and f : Ω → Ω a measurable
map which preserves ρ, i.e. f∗ρ = ρ ◦ f−1 = ρ on F (we also say that ρ
is f -invariant). Moreover, we denote the set of all 2× 2 matrices with
determinant ±1 by SL±(2,R). If A : Ω → SL±(2,R) is measurable, we
construct a skew-product map given by

T : Ω× R2 → Ω× R2

(ω, v) 7→ (f(ω), A(ω)v).

This is called the linear cocyle of A over f , and usually denoted by
T = (f, A). The orbit under T of the point (ω, v) ∈ Ω× R2 is

T n(ω, v) = (fn(ω), A(n)(ω)v)

where

A(n)(ω) = A(fn−1(ω))A(fn−2(ω)) · · ·A(f(ω))A(ω).

In this paper we are interested in studying one particular linear co-
cyle. Let (G,X , µ) be a probability space with G ⊆ SL±(2,R). Define
σ to be the shift map

σ : GN → GN

(ω1, ω2, ω3, . . .) 7→ (ω2, ω3, . . .)

and A : GN → G defined by (ω1, ω2, . . .) 7→ ω1. Both maps are measur-
able with respect to the infinite-dimensional product space (GN,X N, µN),
where X N denotes the σ-algebra generated by the cylinder sets and µN

denotes the product probability measure. The cocyle (σ,A) is called
the product of i.i.d. random matrices. Its dynamics are given by

T n((ω1, ω2, . . .), v) = ((ωn+1, ωn+2, . . .), ωn · · ·ω1v).

Throughout this text, Mn will denote the random variable defined by
Mn(ω) = A(σn−1(ω)) = ωn.
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2.1. Ergodic theory. The map τv : Rn → Rn defined by x 7→ τv(x) =
x+ v for a fixed v ∈ Rn is called a translation. The Lebesgue measure
λ is known to be the unique measure on Rn which is τv-invariant for
all v.

Definition 1. A group (G, ·) together with a topology T is a topological
group if the maps

G×G→ G G→ G

(x, y) 7→ x · y, x 7→ x−1

are continuous.

Definition 2. Let G be a topological group and κ be a measure on
B(G)1. The measure κ is said to be:

• left-translation-invariant if κ(gA) = κ(A) for all A ∈ B(G) and
all g ∈ G;

• right-translation-invariant if κ(Ag) = κ(A) for all A ∈ B(G)
and all g ∈ G.

Observe that Rn taken with its usual addition is a topological group.
The usual translation of a set A ⊂ Rn by a vector v can thus be
represented by vA, which is equal to Av by commutativity, so the
Lebesgue measure is one example of a measure which is both left-
and right-translation-invariant. It is then natural to wonder about the
existence of analogous measures in other topological groups.

Theorem 3. Let G be a compact topological group. There exists a
unique probability measure on B(G) that is both left- and right-translation-
invariant. We call it the Haar measure on G.

Proof. See [17]. □

The following theorem is a fundamental result in ergodic theory. It
establishes a connection between the long-term behaviour of a dynam-
ical system and its expected value.

Theorem 4 (Birkhoff’s ergodic theorem). Let (X,X , κ) be a probability
space and f : X → X be a measurable map such that κ is f -invariant.
If ϕ : X → R is κ-integrable, then the limit

ϕf (x) = lim
n→∞

1

n

n−1∑
k=0

ϕ(fk(x))

exists for κ-a.e. x and ∫
X

ϕf dκ =

∫
X

ϕ dκ.

The sum ϕ(x) + ϕ(f(x)) + · · · + ϕ(fn−1(x)) is called the Birkhoff sum
of ϕ.

1This is the Borel σ-algebra on G.
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Proof. See [13]. □

Definition 5. Let (X,X , κ) be a probability space and T : X → X a
measurable transformation. The map T is said to be κ-ergodic if for
all A ∈ X

T−1(A) = A =⇒ κ(A) = 1 or κ(A) = 0.

Theorem 6 (Kingman’s subadditive ergodic theorem). Let T be a
measure preserving transformation on a probability space (X,X , κ) and
(gn)n∈N be a sequence of integrable functions which is subadditive, i.e.

gn+m(ω) ≤ gn(ω) + gm(T
nω).

Then,

lim
n→∞

gn(ω)

n
= g(ω) ∈ R ∪ {−∞}

for κ-a.e. ω, where g is a T -invariant function. If T is ergodic, then g
is constant.

Proof. See [18]. □

The proof of the following lemma follows [19] as well as [2].

Proposition 7. Let (X, κ) be a probability space and T : X → X a
measurable transformation. Suppose κ is T -invariant and let f ∈ L1(κ)
be a function which satisfies

lim
n→∞

n−1∑
j=0

f(T j(x)) = +∞ (2.1)

for κ-almost every x. Then ∫
X

f dκ > 0.

Proof. Let (sn)n∈N be the sequence defined by

sn =
n−1∑
j=0

f ◦ T j.

For ε > 0 we define the two following sets:

Aε = {x ∈ X : ∀n ∈ N : sn(x) ≥ ε} and Bε =
⋃
k≥0

T−k(Aε).

We begin by proving that

κ

(⋃
ε>0

Bε

)
= 1. (2.2)

Suppose that x is such that (2.1) is satisfied and that for every ε > 0
we have x /∈ Bε. In particular x /∈ B1/l2 for any l ≥ 1, i.e. T k(x) /∈ A1/l2
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for all k ≥ 0, or, equivalently, for all k ≥ 0 there exists nl ∈ N such
that snl

(T kx) < 1/l2. Therefore

lim
l→∞

sn1+···nl
(x) <

∞∑
l=1

1

l2
=
π2

6

contradicting (2.1).
Now fix ε > 0 and let x ∈ Bε. Then, there exists at least one k ≥ 0

such that T kx ∈ Aε. Let kx denote the smallest such k. This entails
that

sn(T
kxx) =

n−1∑
j=0

f(T j(T kxx))

=
n−1∑
j=kx

f(T jx)

≥ ε

for every n ≥ kx + 1. Therefore

n−1∑
j=0

f(T jx) ≥
kx−1∑
j=0

f(T jx) +
n−1∑
j=kx

ε1Aε(T
jx). (2.3)

Let φ and ψ denote the limit of the Birkhoff averages of f and 1Aε

respectively. Divide (2.3) by n and then let n→ ∞. We obtain

φ(x) ≥ εψ(x). (2.4)

Now note that∫
ψ(x) dκ(x) =

∫
lim
n→∞

1

n

n−1∑
j=0

1Aε(T
jx) dκ(x)

= lim
n→∞

1

n

n−1∑
j=0

κ(T−j(Aε))

= lim
n→∞

1

n

n−1∑
j=0

κ(Aε)

= κ(Aε)

and, since φ(x) = 0 when x /∈ Bε,∫
ψ(x) dκ(x) =

∫
Bε

ψ(x) dκ(x)

= κ(Bε).

By Birkhoff’s ergodic Theorem,∫
f dκ =

∫
φdκ ≥ 0
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so we only need to exclude the case of an equality, which is equivalent
to saying φ = 0 almost everywhere. Assume this is the case. By (2.4)
0 = φ(x) ≥ εκ(Bε) and therefore κ(Bε) = 0 for all ε, which contradicts
(2.2). The desired result follows from this contradiction. □

2.2. Lyapunov exponents. Lyapunov exponents are quantities asso-
ciated to a linear cocyle. For a linear cocyle (f, A), its (upper) Lya-
punov exponent γ is defined as

γ = lim
n→∞

1

n
log
∥∥A(n)

∥∥.
If the cocycle in question is the product of 2 × 2 random matrices,
which we intend to study, we obtain

γ = lim
n→∞

1

n
log ∥Mn · · ·M1∥. (2.5)

Suppose such a quantity exists and consider another, arbitrary norm
∥·∥∗ on R2×2. From the finite dimension of R2×2 it follows that any two
norms are equivalent. Therefore there exists a pair of real numbers
0 < C1 < C2 such that the following inequality is satisfied

C1∥Mn · · ·M1∥ ≤ ∥Mn · · ·M1∥∗ ≤ C2∥Mn · · ·M1∥.

The logarithm function preserves the inequalities. We can then divide
by n and take the limit to obtain

γ = lim
n→∞

1

n
log ∥Mn · · ·M1∥∗.

This establishes that γ does not depend on the chosen norm, sup-
posing its existence. We now turn to the question of whether or not γ
is well-defined.

For an arbitrary function g define g+ to be the map x 7→ sup(f(x), 0).
If log+ ∥M1∥ is integrable and n, p ≥ 1 then

log
∥∥A(n+p)(ω)

∥∥ ≤ log ∥Mn+p(ω) · · ·Mn+1(ω)∥+ log ∥Mn(ω) · · ·M1(ω)∥
= log

∥∥A(p)(σn(ω))
∥∥+ log

∥∥A(n)(ω)
∥∥

by the submultiplicative property of matrix norms. Consequently the
sequence (log ||A(n)||)n∈N is subadditive and integrable. By Theorem 6
we have

1

n
log
∥∥A(n)(ω)

∥∥→ γ(ω) ∈ R ∪ {−∞}

for µ-a.e. ω ∈ ΩN. Since σ is µN-ergodic, γ is almost surely constant.
This establishes the conditions for the existence of the Lyapunov ex-
ponent γ.

Unless stated otherwise, we fix ∥M∥ to be the spectral norm of a
matrix M , i.e. the square root of the maximum eigenvalue of M⊺M
and ∥v∥ the usual euclidean norm for a vector v ∈ R2.
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2.2.1. Examples.

Example 1. Consider a probability space (Ω,F , µ) such that supp(µ) =
O(2)2. We have

γ =

∫
O(2)N

lim
n→∞

1

n
log ∥Mn(ω) · · ·M1(ω)∥ dµN(ω)

≤ lim
n→∞

1

n
log(1)

= 0

using the fact that the product Mn(ω) · · ·M1(ω) is an element of O(2)
by closure of the group operation, so ∥Mn(ω) · · ·M1(ω)∥ = 1.

Example 2. Suppose

supp(µ) =

{[
t 0
0 1/t

]
: t ≥ 1

}
.

Observe that

Mn · · ·M1 =

[
tn 0
0 1/tn

]
· · ·
[
t1 0
0 1/t1

]
=

[
tn · · · t1 0

0 (tn · · · t1)−1

]
.

So ∥Mn · · ·M1∥ = max{tn · · · t1, (tn · · · t1)−1} = tn · · · t1. Hence,
log(∥Mn · · ·M1∥) = log(tn · · · t1).

By the usual law of large numbers

γ = lim
n→∞

1

n

n∑
i=1

log(ti) = E [log ∥M1∥] > 0.

2.3. The one-dimensional projective space. We define the real
projective space of dimension one by first defining an equivalence rela-
tion ∼ on R2 \ {0}, stipulating that x ∼ y iff there exists α ∈ R such
that x = αy. The real projective space is defined as the quotient

RP1 = R2\{0}/∼,

i.e. the set of all equivalence classes. The equivalence class, or direction,
of x ∈ R2\{0} will be denoted by x̄ and may be thought of as a straight
line passing through the origin or as the set of all linear combinations
of x denoted by span{x}. Such lines are entirely characterized by the
angle they form with the horizontal axis. Therefore there is an intuitive
identification between RP1 and the interval [0, π) and the two sets may
be regarded as interchangeable when convenient.

A matrixA in GL(2,R) induces a transformation on RP1 in a straight-
forward manner: we start with an element x̄ ∈ RP1 and consider x ∈ x̄.
We then perform the standard matrix multiplication Ax and take the
equivalence class Ax. This procedure results in a well-defined function,
given that it does not depend on the choice of x. In other words, for

2For a brief discussion of O(2) see section 2.4.
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a given matrix A ∈ GL(2,R), the induced map Ā : RP1 → RP1, is
defined by x̄ 7→ Ax. We selectively adhere to this notational distinc-
tion between a matrix and the map it induces in the projective space,
and likewise for a vector and its corresponding direction. More often
than not, we simply use the same symbol for both, unless we deem it
confusing.

The following lemma will be used later on.

Lemma 8. If A ∈ R2×2 has rank one and ν is a probability measure
on RP1, then Ā∗ν is a Dirac measure.

Proof. Since rank(A) = 1, then there exists x ∈ R2 such that range A =
span(x) = x̄. Let B ⊆ RP1 be a measurable set. Then

Ā∗ν(B) = ν(Ā−1(B)) =

{
ν(RP1) if x̄ ∈ B

ν(∅) otherwise.

Therefore Ā∗ν = δx̄. □

Finally, we note that RP1 is a compact and separable topological
space.

2.4. Orthogonal matrices. A matrix A ∈ Rn×n is said to be orthog-
onal if AA⊺ = I. We denote the set of all orthogonal n × n matrices
by O(n), which is easily checked to be a subgroup of GL(n,R).
Suppose A ∈ O(n). Since AA⊺ = I implies that

det(AA⊺) = det(A) det(A⊺) = (detA)2 = 1

then |detA| = 1, or, equivalently, A ∈ SL±(n,R).
We now particularize our discussion to 2× 2 matrices. Consider

A =

[
a b
c d

]
an arbitrary element of O(2). Since A⊺ is an invertible matrix, its
corresponding linear transformation RA⊺ : R2 → R2 is an isomorphism,
hence

span{(a, b), (c, d)} = range RA⊺ = R2,

from which it follows that the rows of the matrix A form a basis of R2.
Additionally, it is an orthonormal basis, because

AA⊺ =

[
a b
c d

] [
a c
b d

]
=

[
∥(a, b)∥2 (a, b) · (c, d)

(a, b) · (c, d) ∥(c, d)∥2
]
= I.

The fact that ∥(a, b)∥ = ∥(c, d)∥ = 1 implies the existence of θ ∈ [0, 2π)
such that (a, b) = (cos θ, sin θ) and, since (a, b) ⊥ (c, d), the vector (c, d)
is either (− sin θ, cos θ) or (sin θ,− cos θ). We have proven that

O(2) =

{[
cos θ sin θ
− sin θ cos θ

]
: θ ∈ [0, 2π)

}
∪
{[

cos θ sin θ
sin θ − cos θ

]
: θ ∈ [0, 2π)

}
.

Therefore, an abitrary matrix A ∈ O(2) has norm equal to ∥A∥ = 1.



LYAPUNOV EXPONENTS OF RANDOM PRODUCTS OF MATRICES 9

3. The statement of the theorem

We now deal exclusively with the product of random matrices, the
linear cocycle (σ,A) described earlier and its associated Lyapunov ex-
ponent. We assume that the measure µ is such that the associated
Lyapunov exponent γ exists, i.e. we assume that log+ ∥M∥ is inte-
grable.

Theorem 9 (Furstenberg). Let Gµ be the smallest closed subgroup
which contains the support of µ. Assume that:

i) Gµ is not compact.
ii) For every finite, non-empty L ⊆ RP1, there exists M ∈ Gµ such

that M̄(L) ̸= L.

Then γ > 0.

The next two propositions establish equivalent conditions for the
theorem, which are, in practice, simpler to check.

Proposition 10. Gµ is compact iff there exists C ∈ GL(2,R) such
that CMC−1 ∈ O(2) for every M ∈ Gµ.

Proof. We begin by proving that

∃C ∈ GL(2,R),∀M ∈ Gµ : CMC−1 ∈ O(2) =⇒ Gµ is compact.

Assume that the premise of the implication above holds and let A be
an element of Gµ. Then CAC

−1 ∈ O(2) and there exists R ∈ O(2) such
that A = C−1RC. Applying the norm to both sides of this equality
yields

∥A∥ =
∥∥C−1RC

∥∥ ≤
∥∥C−1

∥∥∥R∥∥C∥ =
∥∥C−1

∥∥∥C∥.
Since the matrix C is fixed and our choice for A was arbitrary, this
argument holds for all elements of Gµ. Consequently, Gµ is bounded
and therefore it is compact.

We still have to prove the converse implication. To this end, suppose
Gµ is compact. By Theorem 3, a probability measure h, known as
Haar measure, exists on Gµ which is both left- and right-translation-
invariant. Define the quadratic form Q0 : R2 → R by Q0(v) = v⊺Iv
and Q : R2 → R by

Q(v) =

∫
Gµ

Q0(gv) dh(g) =

∫
Gµ

∥gv∥2 dh(g) ≥ 0

which is a positive quadratic form. There exists a positive semidefinite
matrix B such that Q(v) = v⊺Bv for every v. So B = C⊺C for some
matrix C and

Q0(Cv) = v⊺C⊺Cv = Q(v). (3.1)
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Note that C is invertible. Now let Tg0 : Gµ → Gµ be a translation map
defined by g 7→ gg0, then

Q(v) =

∫
Gµ

Q0(gv) dh(g)

=

∫
T−1
g0

(Gµ)

Q0(gv) dh(g)

=

∫
Gµ

Q0(gg0v) dh(g)

= Q(g0v).

This, together with (3.1), yields

Q0(Cg0C
−1w) = Q0(w)

which means Cg0C
−1 ∈ O(2) as desired. □

Before we prove the other equivalence we referred to, we need a
technical lemma.

Lemma 11. If M ∈ SL±(2,R) fixes three directions then M = ±I.

Proof. Let M ∈ SL±(2,R). Suppose there exist distinct x̄1, x̄2, x̄3 ∈
RP1 such that M̄(x̄i) = x̄i for i = 1, 2, 3. Equivalently, there exists
λ1, λ2, λ3 ∈ R such that Mxi = λixi. The matrix M has at most
two linearly independent eigenvectors, thus, without loss of generality,
suppose

x3 = αx1 + βx2

for some α, β ∈ R \ {0}. Then

Mx3 = αMx1 + βMx2 = αλ1x1 + βλ2x2

and

λ3x3 = αλ1x1 + βλ2x2.

By linear independence λ1 = λ2 = λ3. Additionally, |detM | = λ21 = 1
implies that λ1 ∈ {−1, 1} and therefore M = ±I as desired. □

We will also need the following proposition, which we state without
proof.

Proposition 12. Let φ : G → G′ be a group homomorphism. The
quotient group G/Ker φ is isomorphic to Im φ.

Proof. See [1]. □

Proposition 13. Assume Gµ is not compact. Condition ii) in Theo-
rem 9 is true iff for every set L ⊆ RP1 with #L ∈ {1, 2} there exists
M ∈ Gµ such that M̄(L) ̸= L.



LYAPUNOV EXPONENTS OF RANDOM PRODUCTS OF MATRICES 11

Proof. The =⇒ direction is trivial. We prove the converse. Suppose
L ⊆ RP1 is finite, i.e. L = {x̄1, . . . , x̄n} and #L = n. By hypothesis

M̄(L) = {M̄(x̄1), M̄(x̄2), . . . , M̄(x̄n)} = L.

Since #M(L) = #L, each matrixM ∈ Gµ induces a permutation φM of
L. This allows us to define a group homomorphism φ : Gµ → Perm(L)
where Perm(L) denotes the group of all permutations of L. The group
Perm(L) is finite and Gµ must be infinite since we are assuming it
is non-compact. By Proposition 12, Gµ/Ker φ is isomorphic to Imφ ⊆
Perm(L) and therefore Gµ/Ker φ is also finite. Since

Gµ =
⋃

H∈ Gµ
Ker φ

Hker φ

is a finite union, each class in Gµ/Ker φ must be infinite. Consequently,

Ker φ = {M ∈ Gµ : φ(M) = I} = {M ∈ Gµ : M(xi) = xi for i = 1, . . . , n}
is an infinite set. If n ≥ 3 then, by Lemma 11, Ker φ is finite. This is
a contradiction and therefore n ∈ {1, 2}. □

3.1. An application to the random Fibonacci sequence.

Example 3. Consider the random Fibonacci sequence

Fn =

{
Fn−1 + Fn−2, with probability p

Fn−1 − Fn−2, with probability 1− p

for n ≥ 2 and F0 = 0, F1 = 1. The classical Fibonacci sequence occurs
when p = 1, and in this case Fn grows exponentially. We would like to
see how Fn evolves when 0 < p < 1. Notice that[

Fn+2

Fn+1

]
=

[
1 ±1
1 0

] [
Fn+1

Fn

]
.

Define

A+ =

[
1 1
1 0

]
and A− =

[
1 −1
1 0

]
.

We consider the probability space (Ω,F , µ) where Ω = {A+, A−}, F =
P(Ω) and µ = pδA+ + (1− p)δA− with 0 < p < 1.
In this case, the product of random matrices cocyle will be over the

product space (ΩN,FN, µN).
Let Gµ be the smallest closed group which contains supp(µ) = Ω.

We denote the classical Fibonnaci sequence by (Cn)n∈N. Then

An
+ =

[
Cn Cn−1

Cn−1 Cn−2

]
for n ≥ 2. Given that Cn grows exponentially, we have

∥∥An
+

∥∥→ ∞ as
n → ∞ and this proves that Gµ is not compact. We next check if the
second condition of Theorem 9 is satisfied.
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If L is made up of only one direction, then the fact that A− has no
real eigenvalues shows that the condition is satisfied.

Suppose L = {x̄1, x̄2} with x̄1 ̸= x̄2 and M̄(L) = L for everyM ∈ Gµ.
The matrix A− cannot fix both directions since this would again imply
it has real eigenvalues. The remaining case is

Ā−x̄1 = x̄2 and Ā−x̄2 = x̄1

which implies Ā2
−x̄i = x̄i for i ∈ {1, 2}. Since A2

− has complex eigen-
values, no such set L exists. By Proposition 13 and Theorem 9, the
associated Lyapunov exponent γ is positive.
For a computer assisted computation of the Lyapunov exponent in

this context see [21].

4. Proof of the theorem

In this section we fix µ to be a measure satisfying the assumptions
of Theorem 9. As mentioned in the introduction, the proof follows the
one in the notes by Jairo Bochi [2].

4.1. Properties of measures. Let (X,X , κ) be a measure space. The
measure κ is said to be atomic if there exists x ∈ X such that κ({x}) ̸=
0. A well known example of an atomic measure is the Dirac measure.

If X is a topological space, we denote the space of all the probability
measures on (X,B(X)) by the symbol M(X) endowed with the weak∗

topology. A detailed study of this topology is beyond the scope of this
text, but we will make use of the fact that M(X) is a compact space
if X is compact. This is the case when X = RP1. Furthermore, weak∗

convergence is equivalent to the usual weak convergence of measures,
that is, (ρn) converges to ρ iff

lim
n→∞

∫
f(x) dρn(x) =

∫
f(x) dρ(x)

for every bounded and continuous function f on X. In this case we
write ρn ⇒ ρ. Further details and proofs of these results can be found
in [20].

Lemma 14. If ν ∈ M(RP1) is non-atomic and (An ̸= 0)n∈N is a
sequence of matrices converging to A ̸= 0, then An∗ν ⇒ A∗ν.
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Proof. Let f : RP1 → R be a continuous function, then

lim
n→∞

∫
RP1

f(x) dAn∗ν(x) = lim
n→∞

∫
RP1

f ◦ An(x) dν(x)

=

∫
RP1

lim
n→∞

f ◦ An(x) dν(x)

=

∫
RP1

f ◦ A(x) dν(x)

=

∫
RP1

f(x) dA∗ν(x),

where we have used the dominated convergence theorem and the con-
tinuity of f . □

Whenever convenient we may omit the domain of integration. In this
case, the reader should assume that the domain is the whole sample
space corresponding to the respective measure.

Lemma 15. If ν ∈ M(RP1) is non-atomic, then the set of matrices
which preserve ν, i.e.

Hν = {M ∈ SL±(2,R) : M∗ν = ν},

is a compact subgroup of SL±(2,R).

Proof. It is a simple exercise in algebra to see that Hν is a group. We
prove compactness. Hν is compact iff it is closed and bounded. Let
(Mn ∈ Hν)n∈N be a sequence converging to M ∈ R2×2. For each n we
have detMn = ±1 which implies Mn ̸= 0. As for the matrix M , note
that

det(M) = det
(
lim
n→∞

Mn

)
= lim

n→∞
det(Mn) = ±1,

and thereforeM ̸= 0. We can apply Lemma 14 to obtainMn∗ν ⇒M∗ν
i.e. ν ⇒ M∗ν and ν = M∗ν as desired. We have proven that Hν is a
closed set.

Suppose, in order to arrive at a contradiction, thatHν is not bounded,
so there exists a sequence (Mn ∈ Hν)n∈N which diverges. Consider the
new sequence (Xn) given by Xn = Mn∥Mn∥−1. Since (Xn) is a se-
quence in a compact subspace of R2×2 it has a convergent subsequence
(Xnk

) with limit C. Again, by Lemma 14, Xnk∗ν ⇒ C∗ν such that
ν = C∗ν. Now note that,

detC = det

(
lim
k→∞

Mnk

∥Mnk
∥

)
= lim

k→∞

±1

∥Mnk
∥2

= 0.

By the fundamental theorem of linear maps, rank(C) = 1. Lemma
8 would then imply that ν is an atomic measure, contradicting our
assumption. □
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4.2. Stationary measures.

Definition 16. Let ν ∈ M(RP1). We define µ ∗ ν to be the measure
on RP1 which satisfies∫

f(x) d(µ ∗ ν)(x) =
∫∫

f(M̄x) dµ(M)dν(x)

for any bounded Borel function f : RP1 → R. The measure ν is said
to be µ-stationary if µ ∗ ν = ν.

We define the evaluation map by

ev: SL±(2,R)× RP1 → RP1

(M, v̄) 7→ M̄v̄.

Let ν ∈ M(RP1). Notice that if B ⊆ RP1 is a measurable set, then

µ ∗ ν(B) =

∫∫
1B(ev(A, x̄)) dµ(A)dµ(x̄)

=

∫
1ev−1(B)(A, x̄) d(µ× ν)(A, x̄)

= µ× ν({(A, x̄) : Āx̄ ∈ B})
= (µ× ν)(ev−1(B))

= ev∗(µ× ν)(B).

Lemma 17. Every µ-stationary ν ∈ M(RP1) is non-atomic.

Proof. Suppose, so as to obtain a contradiction, that ν is atomic. Then,
the quantity

β = max
x∈RP1

ν({x})

is positive. Let L = {x ∈ RP1 : ν({x}) = β}. If L has infinite
cardinality, then we may consider a countable subset L1 = {x1, x2, . . .},
but this contradicts the assumption that ν is a probability measure
since

ν(L1) = ν({x1, x2, . . .})

=
∞∑
i=1

β

= ∞.

Consequently, L must be finite. Now let x0 ∈ L and note that

β = ν({x0}) =
∫∫

1{M−1x0}(x) dν(x)dµ(M) =

∫
ν({M−1x0}) dµ(M) ≤ β

By definition, the inequality β ≥ ν({M−1x0}) is true for every M , so
ν({M−1x0}) = β and thus M−1x0 ∈ L for µ-a.e. M , i.e. M(L) = L
for µ-a.e. M . This means that the set
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FL = {M ∈ SL±(2,R) :M(L) = L}
has full measure, i.e. µ(FL) = 1. Furthermore, FL is closed, so
supp(µ) ⊆ FL, which implies that Gµ ⊆ FL. This contradicts as-
sumption ii) of Theorem 9. □

Remark 18. It can be proven that µ-stationary measures always exist
(see Lemma 3.5 of [4]). By Lemma 17, any such measure on RP1 is
non-atomic.

4.3. Convergence of µ-stationary measures. Let Sn =M1 · · ·Mn.

Lemma 19. Let ν ∈ M(RP1) be µ-stationary. For µN-a.e. ω ∈ Ω,
there exists νω ∈ M(RP1) such that

Sn(ω)∗ν ⇒ νω.

Proof. Let f ∈ C(RP1). Define

Ff : SL±(2,R) → R

M 7→
∫
f(Mx) dν(x).

Let Fn be the σ-algebra of SL±(2,R)N formed by the cylinders of length
n. Then Sn(·) is Fn-measurable. Let C ∈ Fn, then∫

C

∫
SL±(2,R)

Ff (Sn(ω)M) dµ(M)dµN(ω) =

∫
C

Ff (Sn+1(ω)) dµ
N(ω).

By definition of conditional expectation, we obtain

E [Ff (Sn+1) | Fn] =

∫
SL±(2,R)

Ff (SnM) dµ(M)

=

∫∫
f(SnMx) dν(x)dµ(M)

=

∫
f(Sny) dν(y)

= Ff (Sn).

Therefore the stochastic process {Ff (Sn)}n∈N is a bounded martingale
and as such it converges almost surely, i.e. the limit

Γf(ω) = lim
n→∞

Ff (Sn(ω))

exists for a.e. ω ∈ ΩN. We now use this fact to prove Sn(ω)∗ν ⇒ νω
almost surely for some νω ∈ M(RP1).

By the compactness of RP1, the space C(RP1) is separable. Let
{fk}k∈N be a dense subset of C(RP1). The limit Γfk(ω) exists in a set
Lk of full measure for each k ∈ N. Let

L =
⋂
k∈N

Lk
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then

µN(L∁) = µN

(⋃
n∈N

L∁
k

)
≤

∞∑
n=1

µN(L∁
k) = 0

and we conclude that µN(L) = 1. Now consider ω ∈ L and let νω be a
weak∗ limit point of the sequence of measures Sn(ω)∗ν. Then∫

fk dνω = lim
n→∞

∫
fk dSn(ω)∗ν

= lim
n→∞

∫
fk ◦ Sn(ω) dν

= lim
n→∞

Ffk(Sn(ω)) dν

= Γfk(ω).

Since the limit is the same for all subsequences then Sn(ω)∗ν ⇒ νω. □

Lemma 20. The measures ν and νω from Lemma 19 satisfy

Sn(ω)∗M∗ν ⇒ νω as n→ ∞

for µ-a.e. M .

Proof. Let ℓ = {f1, f2, . . .} be a countable dense subset of C(RP1) and
fix k ∈ N. We will prove that the following quantity is finite:

I =

∫
EµN

[
∞∑
n=1

(∫
fk(Sn(ω)Mx) dν(x)−

∫
fk(Sn(ω)x) dν(x)

)2
]
dµ(M).

Note that

I =

∫ ∞∑
n=1

EµN

[(∫
fk(Sn(ω)Mx) dν(x)−

∫
fk(Sn(ω)x) dν(x)

)2
]
dµ(M)

=
∞∑
n=1

∫
EµN

[(∫
fk(Sn(ω)Mx) dν(x)−

∫
fk(Sn(ω)x) dν(x)

)2
]
dµ(M).

Define

In =

∫
EµN

[(∫
fk(Sn(ω)Mx) dν(x)−

∫
fk(Sn(ω)x) dν(x)

)2
]
dµ(M)

=

∫
EµN [

(Ffk(Sn(ω)M)− Ffk(Sn(ω)))
2] dµ(M)

=

∫
EµN [

(Ffk(Sn(ω)M))2 + (Ffk(Sn(ω)))
2 − 2Ffk(Sn(ω)M)Ffk(Sn(ω))

]
dµ(M)

= EµN
[∫

(Ffk(Sn(ω)M))2 + (Ffk(Sn(ω)))
2 − 2Ffk(Sn(ω)M)Ffk(Sn(ω)) dµ(M)

]
= EµN [

(Ffk(Sn+1(ω)))
2 + (Ffk(Sn(ω)))

2 − 2Ffk(Sn+1(ω))Ffk(Sn(ω))
]
,
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where the last equality comes from the fact that∫∫
Ffk(Sn(ω)M)2 dµ(M)dµN(ω) =

∫
Ffk(Sn+1(ω))

2 dµN(ω).

Furthermore,

EµN
[Ffk(Sn+1(ω)Ffk(Sn(ω))] = EµN

[
EµN

[Ffk(Sn+1(ω))Ffk(Sn(ω)) | Fn]
]

= EµN
[
Ffk(Sn(ω))EµN

[Ffk(Sn+1(ω)) | Fn]
]

= EµN [
Ffk(Sn(ω))

2
]
,

where we have used the law of total expectation in the first equality.
We have shown that

In = EµN [
Ffk(Sn+1(ω))

2
]
− EµN [

Ffk(Sn(ω))
2
]
.

Therefore, we obtain a telescopic sum

I = lim
N→∞

N∑
n=1

In

= lim
N→∞

EµN [
Ffk(SN+1(ω))

2
]
− EµN [

Ffk(S1(ω))
2
]

= lim
N→∞

EµN

[(∫
fk(SN+1(ω)x) dν(x)

)2
]
− EµN

[(∫
fk(S1(ω)x) dν(x)

)2
]

≤ ∥fk∥2C0 .

So I <∞ and the series
∞∑
n=1

(∫
fk(Sn(ω)Mx) dν(x)−

∫
fk(Sn(ω)x) dν(x)

)2

is convergent for µN-a.e. ω and µ-a.e. M . So

lim
n→∞

∫
fk(Sn(ω)Mx) dν(x) = lim

n→∞

∫
fk(Sn(ω)x) dν(x)

=

∫
fk(x) dνω(x).

Since the set ℓ is dense, the result holds for any continuous function,
and we have proven the desired result. □

We now show that the measures νω above are necessarily Dirac mea-
sures.

Lemma 21. For µN-a.e. ω, there exists Z(ω) ∈ RP1 such that νω =
δZ(ω)

Proof. Fix an ω ∈ ΩN in the full-measure set for which

Sn(ω)∗ν ⇒ νω and Sn(ω)∗M∗ν ⇒ νω
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as n → ∞ for µ-a.e. M . The sequence Xn(ω) = Sn(ω)∥Sn(ω)∥−1 has
a convergent subsequence because it is defined on a compact subspace
of R2×2. Suppose its limit is X(ω). As reasoned before,

lim
n→∞

Sn(ω)

∥Sn(ω)∥
= X(ω) =⇒ ∥X(ω)∥ = 1

because of the continuity of the norm. Consequently, each Xn(ω) and
X(ω) itself are non-zero matrices. By Lemma 17, ν is non-atomic, and
thus we are in a position to apply Lemma 14 to conclude that

X(ω)∗ν = X(ω)∗M∗ν = νω

for µ-a.e. M .
SupposeX(ω) is invertible. This would mean that ν =M∗ν and thus

X is an element of Hν as defined in Lemma 15 for µ-a.e. M , therefore
Gµ ⊆ Hν . We are already assuming that Gµ is closed and have now
concluded that it is a subspace of a compact space, which means it must
be compact, contradicting assumption (i) of Theorem 9. In conclusion,
X(ω) must not be invertible, from which follows rank(X(ω)) = 1. By
Lemma 8 X(ω)∗ν = νω is a Dirac measure. □

4.4. Norm growth. We now prove that convergence to a Dirac mea-
sure tells us something about the norm growth of our product of ma-
trices.

Lemma 22. Let m ∈ M(RP1) be non-atomic and let (An) be a se-
quence in SL±(2,R) such that An∗m ⇒ δz̄, where z̄ ∈ RP1. Then
∥An∥ → ∞. Moreover, for all v ∈ R2,

∥A⊺
nv∥

∥A⊺
n∥

→ |⟨v, z⟩|.

Proof. Suppose An∥An∥−1 converges to A. Lemma 14 implies that

An∗m ⇒ Ā∗m, hence Ā∗m = δz̄. If detA ̸= 0 then m = A−1∗δz̄ is
Dirac. Contradiction. Hence detA = 0. Now note that

0 = |detA| = lim
n→∞

∣∣∣∣detAn

∥An∥2

∣∣∣∣ = lim
n→∞

1

∥An∥2

so limn→∞ ∥An∥ = ∞ as desired. Furthermore, the fact that A ̸= 0 tells
us that rank(A) = 1 and thus range(A) is a line. Suppose range(A) =
span{y} = ȳ for some y ∈ R2, then

Ām({ȳ}) = m(A
−1
({ȳ})) = m(RP1) = 1 = δz̄({ȳ})

and z̄ = ȳ. Now suppose ∥z∥ = 1 and let {e1, e2} be the canonical
basis of R2. Then

Ae1 = ±∥Ae1∥z and Ae2 = ±∥Ae2∥z.
Let

A =

[
a b
c d

]
,
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then ∥Ae1∥2 + ∥Ae2∥2 = a2 + c2 + b2 + d2. The eigenvalues of A⊺A
are λ1 = 0 and λ2 = a2 + b2 + c2 + d2 which, together with the fact
that ∥A∥ = 1, implies that λ2 = 1 = ∥Ae1∥2 + ∥Ae2∥2. Now let v be a
vector in R2, then

∥A⊺v∥2 = ⟨A⊺v, e1⟩2 + ⟨A⊺v, e2⟩2

= ⟨v,Ae1⟩2 + ⟨v, Ae2⟩2

= (∥Ae1∥2 + ∥Ae2∥2)⟨v, z⟩2

= ⟨v, z⟩2.

Thus,

lim
n→∞

∥A⊺
nv∥

2

∥A⊺
n∥2

= ⟨v, z⟩2.

□

4.5. Proof of Theorem 9. Define Pn =M⊺
1 · · ·M⊺

n . Let ν ∈ M(RP1)
be µ-stationary. By Lemma 19 there exists a measure νω ∈ M(RP1)
such that Pn(ω)∗ν ⇒ νω for µN-a.e. ω. Then, by Lemma 21 there
exists a direction Z̄(ω) ∈ RP1 such that νω = δZ̄(ω) for µN-a.e. ω.
Using Lemma 22 we obtain that

lim
n→∞

∥P ⊺
n (ω)∥ = lim

n→∞
∥Pn(ω)∥ = ∞ (4.1)

and
∥P ⊺

n (ω)v∥
∥Pn(ω)∥

→ |⟨v, Z(ω)⟩|. (4.2)

for µN-a.e. ω and every v ∈ R2. Define

T : SL±(2,R)N × RP1 → SL±(2,R)N × RP1

(ω, x̄) 7→ (σ(ω),M1(ω)x)

and

f : SL±(2,R)N × RP1 → R

(ω, x̄) 7→ log
∥M1(ω)x∥

∥x∥
.

Then
n−1∑
j=0

f(T j(ω, x̄)) = log
∥Mn(ω) · · ·M1(ω)x∥

∥x∥
→ ∞

for µN-a.e. ω and x̄ non-orthogonal to Z̄(ω) by (4.1) and (4.2). Since
ν is non-atomic, the convergence holds µN × ν almost everywhere. For
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any w ̸= 0

γ = lim
n→∞

1

n
log

(
sup
x̸=0

∥P ⊺
nx∥

∥x∥

)
≥
∫∫

lim
n→∞

1

n
log

(
∥Mn(ω) · · ·M1(ω)w∥

∥w∥

)
dµN(ω)dν(w)

=

∫
lim
n→∞

1

n

n−1∑
j=0

f ◦ T j(ω,w) d(µN × ν)(ω,w)

=

∫
f(ω,w) d(µN × ν)(ω,w)

by Birkhoff’s ergodic theorem. Finally, by Proposition 7

γ ≥
∫
f(ω,w) d(µN × ν)(ω,w) > 0.

5. Application to continued fractions

5.1. Continued fractions and the Lévy constant. It is well-known
since Gauss that any irrational number α ∈ [0, 1] \Q can be written as
a continued fraction in the following way:

α =
1

a1 +
1

a2 + . . .

,

where the coeficients a1, a2, · · · ∈ N. This representation is unique,
so for each irrational we have an infinite sequence of positive integers
an. Notice that the coefficients an are computed using the Gauss map,
T : [0, 1] → [0, 1], T (0) = 0 and

T (x) =
1

x
mod 1, x ̸= 0.

Indeed,

an = ⌊1/αn−1⌋.
where we denote the iterates of α under T by

αn := T n(α), n ∈ N0,

and ⌊·⌋ represents the integer part of a number. The Gauss map T
preserves the absolutely continuous Gauss measure given by

g(A) =
1

log 2

∫
A

1

1 + x
dx,

for any measurable set A, and it is ergodic.
If we truncate the continued fraction expansion up to the coefficient

an, we obtain a rational number pn/qn in irreducible form. The se-
quence pn/qn converges to α with very nice properties (see [12]). These
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are called the convergents of α and we have

qn = anqn−1 + qn−2, pn = anpn−1 + pn−2, n ∈ N,

with q−1 = p0 = 0 and q0 = p−1 = 1. It follows immediately that qn
grows at least exponentially.

The Lévy constant of an irrational α is the exponential growth rate
of the inverse of the product of the iterates of α,

Λ(α) := lim
n→+∞

1

n
log(α0 . . . αn−1)

−1.

It is not difficult to show that this is greater than zero for any number.
It is a remarkable result, shown by Khintchine [14], that this value is
constant for a full Lebesgue measure set of numbers. The explicit value
was computed by Lévy [15, 16]. We give a simple proof below, based
on the fact that we know that T preserves the measure g and using the
Birkhoff ergodic theorem. For other measures of interest, in particular,
singular measures supported on Cantor sets, this proof would not work.

Theorem 23 (Lévy-Khintchine). For Lebesgue a.e. α ∈ [0, 1] \Q,

Λ(α) =
π2

12 log 2
.

Proof. Observe that

Λ(α) = lim
n→+∞

1

n

n−1∑
i=0

log T i(α) =

∫
log(x) dg(x),

for g-a.e. x, where we have used the Birkhoff ergodic theorem. Since g
is equivalent to the Lebesgue measure, the above holds also Lebesgue
almost everywhere. It remains to compute the integral∫ 1

0

log(x)

1 + x
dx = −

∫ 1

0

log(1 + x)

x
dx,

where we have integrated by parts to obtain the right hand side of the
equality. Using the Taylor series of log(1 + x) =

∑
k∈N(−1)kxk/k with

|x| < 1,

Λ(α) =
1

log 2

∑
k∈N

(−1)k+1

k2
.

This last series is known to be equal to π2/12, as it is a simple exercise
using the Fourier series of x 7→ x2 on [−π, π] evaluated at 0. □

The above can be stated in a different context using two dimensional
matrices in G := SL±(2,R). Indeed, it is straightforward to check that[

αn

1

]
=

1

α0 · · ·αn−1

An · · ·A1

[
α0

1

]
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where

An =

[
−an 1
1 0

]
∈ G

are hyperbolic. In consequence, we get that the Lévy constant is the
Lyapunov exponent

Λ(α) = lim
n→+∞

1

n
log ∥An · · ·A1∥.

It is also simple to verify that

Qn := An · · ·A1 = (−1)n
[

qn −pn
−qn−1 pn−1

]
, n ∈ N,

and Q0 = I. In this way, we also have the equality

Λ(α) = lim
n→+∞

1

n
log qn,

giving the exponential growth rate of the convergents of α.

5.2. Random cocycle. Consider the probability measure µ on G de-
fined by

µ

([
−a 1
1 0

])
= pa

for each a ∈ N, where 0 ≤ pa ≤ 1 and
∑

a∈N pa = 1.
Recall now the shift map σ : GN → GN,

σ(ω1, ω2, . . . ) = (ω2, ω3, . . . )

which is simply the Gauss map T in different coordinates. In addition,
take the map A : GN → G,

A(ω) = ω1.

Denote by π the map that transforms a matrix in G into the sym-
metric of its first entry. Now, take

π̂(ω) := (πω1, πω2, . . . ) = (a1, a2, . . . ).

Finally, let

ϕ(a1, a2, . . . ) ∈ [0, 1]

be the number whose continued fraction expansion is (a1, a2, . . . ) (this
map ϕ will be further discussed below). Hence, ϕ ◦ π̂(suppµN) ⊂ [0, 1].
The linear cocycle (σ,A) over a Bernoulli shift has Lyapunov expo-

nent γ(ω) equal to the Lévy constant Λ(α(ω)), where

α(ω) = ϕ ◦ π̂(ω).
Theorem 9 can then be applied.

Proposition 24. Λ(α(ω)) > 0 is constant and positive for µN-a.e. ω.

Proof. Easy to check the conditions of Theorem 9. □



LYAPUNOV EXPONENTS OF RANDOM PRODUCTS OF MATRICES 23

This is a general result depending on the choice of the distribution
pa. In the following we will transform it into a result on irrational
numbers.

5.3. Rank intervals. We are now interested in constructing a sort of
partition of the interval (0, 1] based on the finite continued fractions
of rationals numbers This will allows us in the sequel to relate full
probability sets with full Lebesgue measure sets of irrationals.

Given n ∈ N, define a n-rank interval as a set in the form

∆n(k1, . . . , kn) = {α ∈ [0, 1] : a1(α) = k1, . . . , an(α) = kn}

for some integer vector (k1, . . . , kn) ∈ Nn, which is indeed an interval.
Moreover, there are only countably many rank intervals. Whenever the
integer vector is clear, we may simply write ∆n. Recall that an(α) =
⌊1/αn−1⌋.

We associate the continued fraction expansion of α to the map ϕ : NN →
R,

ϕ(a1, a2, . . . ) :=
1

a1 +
1

a2 +
1

· · ·

.

As mentioned before, the image of ϕ is [0, 1] \ Q and ϕ is injective.
Recall that α is rational iff there is some n ∈ N such that αn = 0. So,
an+1(α) = ∞. We thus obtain the rationals as limits of irrationals and
abuse notation to write

ϕ(a1, . . . , an) := lim
k→+∞

ϕ(a1, . . . , an, k, an+2, . . . )

=
1

a1 +
1

· · ·+
1

an

.

Observe also that

ϕ(a1, . . . , an, 1) = ϕ(a1, . . . , an + 1).

Also, for n even and k′ < k,

ϕ(a1, . . . , an, k
′) < ϕ(a1, . . . , an, k),

and for n odd and k′ < k,

ϕ(a1, . . . , an, k) < ϕ(a1, . . . , an, k
′).

Now,

∆n(a1, . . . , an) =

{
[ϕ(a1, . . . , an), ϕ(a1, . . . , an + 1)) , n even

(ϕ(a1, . . . , an + 1), ϕ(a1, . . . , an)] , n odd.
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It is clear that

lim
n→+∞

|∆n| = 0,

where | · | stands for the length of the interval.

Lemma 25. Let n ∈ N and (a1, . . . , an) ∈ Nn. Then the interiors of
the sets ⊔

k∈N

∆n+1(a1, . . . , an, k)

and ∆n(a1, . . . , an) coincide. Moreover, ⊔k∆1(k) = (0, 1].

Proof. The intervals ∆n+1(a1, . . . , an, k) are disjoint by construction.
Suppose first that n is odd. So,⊔
k∈N

∆n+1(a1, . . . , an, k) =
⊔
k∈N

[ϕ(a1, . . . , an, k), ϕ(a1, . . . , an, k + 1))

= [ϕ(a1, . . . , an + 1), ϕ(a1, . . . , an)) ,

which has the same interior as ∆n(a1, . . . , an). Same idea for n even.
□

The push-forward of the µN measure into [0, 1] is denoted by

η := ϕ∗π̂∗µ
N.

From the definitions of ∆n and η we get immediately that

η(∆n(a1, . . . , an)) =
n∏

i=1

pai

and

η({x}) = 0, x ∈ [0, 1].

Additionally,

lim
n→+∞

η(∆n) = 0.

Proposition 26. Any interval J ⊂ [0, 1] is a disjoint union of rank
intervals η-mod0.

Proof. Suppose J = (α, β) have rational edges, i.e. α, β ∈ Q. Let
ϕ(a1, . . . , an) = α and ϕ(b1, . . . , bm) = β their continued fractions. If
n = m, it means that both α and β are edges of ∆n intervals. So, J is
the union of bn − an rank intervals (minus α and β themselves).

Without loss of generality, assume now that n > m. Hence, since
both α and β are edges of n-rank intervals, J is again a union of ∆n’s.

We now consider the case where α ∈ R \Q and β ∈ Q. Let (rn)n∈N
be a strictly decreasing sequence in J of rational numbers such that
rn → α and define the sets

A1 = (r1, β), A2 = (r2, r1], . . .
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The union of these sets is clearly disjoint and equal to J and each
Ai can be written as a disjoint union of finitely many rank intervals
excluding a set of η-measure zero.

We can apply the same reasoning for the case α ∈ Q and β ∈ R \Q.
Finally, if α and β are both irrational, we split the interval by picking
a rational r such that J = (α, r] ∪ (r, β) and treating each subinterval
separately. □

5.4. Lévy constant for subsets of irrationals.

Theorem 27. If pa > 0 for all a ∈ N, then η is equivalent to the
Lebesgue measure λ on [0, 1].

Proof. We first prove that λ(A) = 0 implies η(A) = 0. Suppose λ(A) =
0 and let ε > 0. By the familiar characterization of Lebesgue-null sets,
there exists a sequence of intervals U1, U2, . . . ⊆ [0, 1] such that

∞∑
i=1

λ(Ui) < ε and A ⊆
⋃
i∈N

Ui.

Without loss of generality, we can assume that Ui fits inside one
rank interval (otherwise we can split Ui into subintervals which do).
Let ∆ℓ(i) be the highest order interval for some vector (k1, . . . , kℓ(i)) for
which Ui is a subset of. Thus,

η(Ui) ≤ η(∆ℓ(i)) =

ℓ(i)∏
j=1

pkj .

This last quantity can be made arbitrarily small by decreasing the
chosen value of ε. In particular, for any δ > 0 we can find ε > 0 such
that it is smaller than δ/2i. We have shown that for every δ > 0 there
exist intervals U1, U2, . . . ⊆ [0, 1] such that

η(A) ≤
∞∑
i=1

η(Ui) ≤
∞∑
i=1

δ

2i
= δ,

from which η(A) = 0 follows.
We now prove the converse. Assume η(A) = 0. The measure η is

regular since it is Borel. Hence, for ε > 0 there exists an open set O
such that A ⊆ O and η(O) < ε. By Proposition 26, the set O is the
countable union of disjoint rank-intervals (η-mod 0) denoted by ∆(i).
Hence,

η(O) =
∞∑
i=1

η(∆(i)) < ε.

Thus we can cover A with rank-intervals of arbitrarily small η-measure.
Because pa > 0 for every a ∈ N, this implies that we can make λ(∆(i))
as small as desired (if some pa = 0, we would have rank intervals with
zero η-measure, so we exclude this situation). That is, we decrease the
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η-measure by increasing the order of the rank intervals, which means
that their length get also smaller. In particular, we can fix δ > 0 and
pick ε > 0 such that λ(∆(i)) < δ/2i. From this follows that

λ(A) < λ(O) < δ,

and so λ(A) = 0. □

The previous results imply that Λ is positive and constant Lebesgue
almost everywhere, as in Lévy-Khintchine’s theorem. It does not give
the actual value of the Lévy constant, as that is the result of the pleas-
ant fact that the invariant Gauss measure is explicitly known. However,
the application of Furstenberg’s theorem can give some insights about
Lévy constants for other sets of numbers, of zero Lebesgue measure.
As an example, consider the bounded type irrationals, that is the ones
that have a bounded sequence of the continued fraction coefficients:
an ≤M for some fixed M > 0. So, let pa = 0 for a > M . From Propo-
sition 24 we also know that the Lévy constant is constant for some full
µN measure set. This corresponds to a Cantor set in [0, 1].
The above ideas can be also used for another important function,

the Khintchine’s constant [14],

K0(α) = lim
n→+∞

1

n
log(a1 . . . an).

Many questions arise about the properties of the functions Λ and K0

(see e.g. [8, 22]) with respect to α, which become related to questions
about the regularity of γ with respect to µ (cf. [3, 7, 6]). We believe
that this connection could be useful to enlarge our understanding of
number theory with respect to continued fractions, in particular in
higher dimensions.
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