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Abstract

Some basic introductory fast notes on symplectic topology and ge-
ometry with emphasis in symplectomorphisms and Hamiltonian dy-
namics. To read this it is assumed some knowledge of differential
geometry.

1 Introduction

It has been realised from the study of classical mechanics, variational calcu-
lus, geometrical optics, wave propagation, etc., the existence of a relevant set
of transformations of the phase space of a dynamical system. This is a sub-
set of the larger set of volume-preserving diffeomorphisms. Besides having
the incompressibility property, those diffeomorphisms preserve a symplec-
tic structure of the phase space, thus are called symplectomorphisms.
They form a subgroup and present particular geometrical and topological
properties and global invariants.

A symplectic structure w defined on an even-dimensional smooth
manifold M?? is a closed non-degenerate differential 2-form (a more de-
tailed account on this definition is contained in Section 2). The pair (M, w)
is called a symplectic manifold.

The symplectomorphisms preserve the symplectic form, thus also the
naturally induced volume form w? = wA---Aw. In this way, symplectomor-
phisms are volume-preserving and cannot have attractors (this is known for
Hamiltonian flows by using Liouville’s theorem — which connects to ergodic
theory). The preservation of the symplectic structure gives rise to this and
several more constraints on the admissible dynamical behaviour, as we shall
see in the following.

The word symplectic was introduced by Weyl [11] to describe the finite-
dimensional group of linear transformations preserving a non-degenerate
skew-symmetric bilinear form. The name symplectic geometry was then
used by Siegel [9] to study the geometry of that linear group. Nowadays

*j.lopes-dias@damtp.cam.ac.uk



this nomenclature is extended to non-linear symplectic manifolds and maps.
As an additional remark, symplectic geometry can be regarded in a sense as a
complexification of Riemannian geometry (cf. Arnol’d’s mathematical dream
of “simplectization, complexification and mathematical trinities” [3]). The
matrix J = [PI 6], an essential ingredient in mechanics, satisfies J2 = —1,
an analogue of ¢ in complex analysis.

Symplectic topology is more recent and aims to understand global sym-
plectic phenomena. It has become an active research area of its own in,
roughly, three main lines of development briefly summarised below (for more
details and insights on results see e.g. [1, 2, 4, 8]):

e Variational methods and variational theory of capacities (Rabinowitz,
Weinstein, Conley, Zehnder).

e Flexibility/rigidity, almost-complex structures associated to a sym-
plectic form, theory of symplectic homology (Gromov, Floer).

e Globalisation of the classical idea of a generating function — related to
variational formulation (Viterbo, Chaperon, Laudenbach, Sikorav).

To follow this notes it is assumed some knowledge of differential geome-
try, in particular calculus of differential forms (a good reference is [6]). The
application of this language to Hamiltonian dynamics simplifies its study, in
contrast with traditional notation. That is adequate if we write functions in
terms of coordinates e.g. H(q,p) when the coordinates are fixed. But when
we change coordinates it is rather ambiguous to distinguish when H(¢', p’)
denotes the same function with new arguments, or is a different function of
(¢',p") with the same numerical value as H with respect to (¢,p). The need
to consider partial derivatives still increases the “entropy” on the reader’s
mind!

2 Symplectic structure

We say that a differential 2-form w € Q?(M) on a C*-manifold M?¢ is
closed if dw = 0. This is a condition of geometrical nature.

Moreover, w is non-degenerate if, for every ¢ € M and X € T;M,
w(X,Y)(q) = 0 implies Y = 0. This is the same as to say that w? # 0.
Thus, for every ¢ € M, the map

T,M —T;M
X(q) = (1xw)(q) == w(X,)(q)
is an isomorphism. So, there is a one-to-one correspondence between 1-forms

txw € T*M and vector fields X € T'M, or simply between the tangent and
the cotangent bundles (as in Riemannian geometry).



The conditions on the structure imply that M has to be even-dimensional
and orientable.

Example 2.1 If M = R*?, the canonical symplectic form is given by

d
wo = Zd.’L’j A dy;.
j=1

Notice that this form is exact since we can write it as w = df where
d
0= Z yjdmj.
Jj=1

Choosing v, w € R?¢, wq is calculated like

wo(v,w) = Y dr; ®dyj(v,w) — dy; ® dr;(v,w)

(VjWatj — Vagjwj)

d
>
J=1
d
>
Jj=1

v'Jw = (Ju,w),

where (-,-) is the standard Riemannian metric on R??. Section 7 contains
more on this case. O

Example 2.2 The most natural example of a symplectic structure is given
on the cotangent bundle T*M of any given smooth manifold M. It is an
exact form w = df where @ is related to the 1-forms of the sections of
T*M. We start by the coordinate-free definition and then present the local
coordinates version.

A point in the cotangent bundle T*M can be written as (¢, o,), where
q belongs to the manifold M and o4 is a 1-form on M taken on g, i.e.
oq € T; M. The main ideia is that, for each point in 7" M, we can choose 6 to
be essentially the 1-form o itself. This is done via the natural projection 7 of
T*M on M (more precisely, its derivative), sending tangent vectors at (g, o)
to tangent vectors in the tangent space of M at gq. Consider the projection
of the cotangent bundle onto the manifold: 7: T"M — M, (q,04) — ¢. Its
derivative at (q,04) € T*M is a linear map

dw(‘]a Uq) : T(q,O'q)T*M - TqM7 dw(Qa Uq) (67 77) = g

The 1-form 0: TT*M — R is then chosen to be at each point (¢,0,) € T*M
given by 0, ,.) = 040 dm(g,04). In what follows we show that the so-called
canonical form on the cotangent bundle w = df is non-degenerate.



In local coordinates on T*M, (z(q),y(oq)) € R*,

0 0 0
dr(q,04) 8—:1:] = 8—% and dn(q,04) 3 =0.

J

So, we can write the 1-form on M as o, = Ej yjdx;. Therefore, 6§ =
> j y;drj and w = wp which is obviously non-degenerate. O

In the same way as before, we can identify a vector field X with the
(2d — 1)-form vxw?.

The identification of vector fields with forms is quite important because
it allows us to describe vector fields that generate flows preserving the struc-
ture. So, the nature of the systems is fully contained in the choice of the
form.

Another property arising from the definitions of forms is the following

Theorem 2.3 (Darboux) Letw be a symplectic or volume-preserving form
on M and B a neighbourhood of ¢ € M. Then, there is a local diffeomor-
phism : B — R?¢ such that 9wy = w.

Note that Darboux’s theorem implies that there are no local symplectic
or volume invariants. So, the theory of symplectic invariants and obstruc-
tions (see Section 3 for examples) are eminently global.

Two symplectic manifolds (M7, w;) and (My, we) are said to be symplec-
tomorphic if there is a diffeomorphism f: M; — Ms satisfying f*ws = wy.

There is also the concept of finite or infinite dimensional Poisson mani-
folds. The basic structure is the Poisson bracket on the space of functions
rather than 2-forms. We will only mention that a Poisson manifold is sym-
plectic by relating the symplectic structure with the Poisson bracket (cf.
Appendix 14 of [2]).

3 Examples of symplectic phenomena

The following examples show that the behaviour of symplectomorphisms
may be different from that of volume-preserving diffeomorphisms. The case
of dim M = 2 is different though, since there the group of area-preserving
diffeomorphisms coincides with the one of symplectomorphisms.

Example 3.1 (Nonsqueezing and the symplectic camel) To understand
the geometry of a map one usually starts by looking at the image of sim-
ple objects like balls. In the case of volume-preserving diffeomorphisms the
ball is diffeomorphic to the image and both have the same volume. Gro-
mov’s nonsqueezing theorem (1985) proves that a standard ball cannot be
symplectically embedded into a thin cylinder except for dim M = 2. Thus
there are volume-preserving diffeomorphisms that are not symplectic. Also,



it shows that there is a basic property of the ball and the cylinder which
is preserved by symplectomorphisms. These universal obstacles in the sym-
plecting embedding led to the definition of Gromov’s width and symplectic
capacities.

A related problem consists of determining the possibility of continuously
transforming by simplectomorphisms a ball (or a camel!) through a small
“hole in a wall”. Gromov’s methods answered negatively for dimension 4 or
higher. Again, it is possible to do so in dimension 2 as the answer is true
for area-preserving diffeomorphisms. a

Example 3.2 (Symplectic fixed point theorems) Consider the symplec-
tic 2-torus T? = R? /Z?2 whose symplectic structure is inherited from R?, i.e.
the standard area form. Let H be a time-independent Hamiltonian on T?
and ¢ the time-1 map of the associated flow (a symplectomorphism). Now,
we want to count the number of fixed points of ¢. We can start by looking at
the critical points of H as the equation of motion is (£,y) = JVH(z,y) = 0.
If H is sufficiently C2-small, those are the only fixed points, so, we can count
the number of fixed points by the critical points of H. It is at least two since
T? is compact and every non-constant function has distinct maximum and
minimum. In fact, the minimum number of critical points, Crit(M), taken
over all smooth functions on a compact manifold M is a topological invari-
ant of M (using Morse theory of differential geometry). It is known that
Crit(T?) = 3.

For any compact symplectic manifold and an arbitrary large Hamiltonian
flow whether depending on time or not, Arnol’d conjectured that the same
kind of estimates on the number of fixed points remained true. This con-
jecture for T? can be considered as a generalisation of the Poincaré-Birkhoff
theorem (also known as Poincaré’s last geometric theorem) on the existence
of two fixed points for area-preserving twist maps (for short, twist maps) of
the annulus.

The connection between fixed points of a mapping and critical points of
the generating function is underneath the “duality” between twist maps and
Frenkel-Kontorova models. The latter being one-dimensional discrete elastic
chains of oscillators in a periodic potential with gradient-like dynamics (cf.
[10]). O

4 Diffeomorphisms and vector fields

Consider a symplectic manifold (M,w) and the induced volume form v =
w? (sometimes called symplectic volume). Let us introduce the following
notations:

e Diff(M) is the group of diffeomorphisms of M,



e Diff,,(M,v) = {¢ € Diff(M): v*v = v}, the subgroup of volume-
preserving diffeomorphisms of M,

e Symp(M,w) = {¢ € Diff(M): y*w = w}, the subgroup of symplecto-
morphisms of (M, w).

Symplectomorphisms can also be defined as being the ones among all dif-
feomorphisms that preserve the Poisson bracket: for any f,g € C*°(M,R),

{f,g9}op={fot,goyp} iff ¢ € Symp(M,w).

Let X(M) stand for the set of every smooth vector fields on M. Vector
fields can be regarded as differential operators on functions. If X € X' (M)
and f € CY(M,R), we have X f = df(X) = Lx(f), where Ly is the Lie
derivative with respect to X. When evaluated at ¢ € M, this is the direc-
tional derivative of f at ¢ along X (q).

We can classify the elements of X'(M) by the following definitions:

e X € X(M) isasymplectic vector field iff 1 xw is closed, i.e. d(txw) =
0 or equivalently by Cartan’s formula Ly (w) = d(txw) + tx(dw) = 0.
This means that the symplectic form is constant along the flow of X.
We therefore write X € X (M,w).

e X € X(M) is a Hamiltonian vector field iff .yw is exact, i.e.
txw = dH for some primitive function H € C'(M,R) called the
Hamiltonian function. In this case a function identifies (generates)
a vector field and we denote X by Xg.

It is clear that Hamiltonian implies symplectic, because exact implies
closed. Locally, any symplectic vector field is Hamiltonian. Globally, when-
ever the (de Rham) first cohomology group of M vanishes: H'(M) =0 (i.e.
all the closed 1-forms are exact), symplectic vector fields are Hamiltonian.

Exercise 4.1 Let M = T? and w = dz A dy. Show that the vector fields
X, = a% and Xy = a% are symplectic but not Hamiltonian.

Proposition 4.1 Let M be a closed (compact and without boundary) man-
ifold, and the 1-parameter family ' € Diff(M) generated by the 1-family of
vector fields X' € X (M), i.e.

d
—dtwt =Xloyt, ¢°=1d
Then:

e ! € Symp(M,w) iff X' € X(M,w). So, symplectic vector fields gen-
erate symplectomorphisms. (Notice that ¢ is a isotopy to the iden-
tity.)



o IfY,Z are symplectic vector fields, their commutator [Y,Z] = Ly (Z) is
a Hamiltonian vector field with Hamiltonian function w(Y, Z). Thus,
we write [Y, Z] = Xy, 7)-

Remark 4.2 From the proposition above, given the Hamiltonian functions
f,9 € C®°(M,R) and their respective Hamiltonian vector fields Xy, X,
we have w(Xy, Xg) = {f,g} and X5 = [Xj, Xy]. Therefore, a Poisson
manifold is symplectic.

Any smooth 1-parameter family ¢! in Symp(M,w), t € [0,1], with
¢p? = Id is called a symplectic isotopy on M. This means that ¢! is
symplectic isotopic to the identity. We can show that such isotopies are
always generated by a vector field as in Proposition 4.1.

e A symplectic isotopy is generated by a unique 1-family of symplectic
vector fields X! € X (M, w).

e If 1ytw is exact, we can find a smooth 1-family of time-dependent
Hamiltonians H' € C*°(M,R) such that X! = Xg¢. So, 9! is a
Hamiltonian isotopy.

In particular, if M is simply connected, every symplectic isotopy is
Hamiltonian.

A symplectomorphism is Hamiltonian if it is Hamiltonian-isotopic to the
identity. The space of Hamiltonian symplectomorphisms is denoted by
Ham(M,w) and it is a normal subgroup of Symp(M,w). The corresponding
Lie algebra is the algebra of all Hamiltonian vector fields.

Exercise 4.2 Show that for M = T? and the standard area form dzAdy, the
symplectomorphisms isotopic to the identity preserve the “centre of gravity”,
i.e. they are of the form:

Y(z,y) = (x + f(z,y),y + 9(x,y)), where /T2f=/T2g=0-

There is an interesting relation between the Lie groups of diffeomor-
phisms and the corresponding Lie algebras with respect to the commuta-
tor [-,-] for vector fields, see Table 4. It is opportune to remark also that
C*(M,R) is a Lie algebra under the Poisson bracket. Furthermore, the
transformation H — Xpg from (C*°(M,R),{-,-}) to the space of Hamil-
tonian vector fields with the commutator operator, is a morphism of Lie
algebras.

5 Hamiltonian dynamics

A Hamiltonian system is a triple (M,w, H) where (M, w) is a symplectic
manifold and H € C*°(M,R) is the Hamiltonian function. The vector field



Table 1: Comparing the classes of diffeomorphisms of M.

Lie group | Lie algebra of vector fields

Diff(M) X (M) differential geometry
Diffyo1 (M, v) divergence-free incompressible hydrodynamics
Symp(M, w) locally Hamiltonian symplectic geometry
Ham(M, w) Hamiltonian Hamiltonian dynamics

Xg € X(M,w) determined by the identity ¢x,w = dH is the Hamiltonian
vector field associated to H. (Notice that H is not a function of time ¢. This
can be always the case by considering the extended manifold M' = M x R
and a point on it is (q,t).)

The vector field Xy generates the Hamiltonian flow, i.e. a smooth
l-parameter group of Hamiltonian symplectomorphisms ¢!, € Ham(M,w)
such that

d
0 =Xmodly, ¢y =1d

In these conditions, ¢!, is an isotopy for a time-independent Hamiltonian.
We remark also that

,CXH(H) :XHH:dH(XH) = (LXHW)XH :w(XH,XH) =0.

So, the Hamiltonian vector field Xz is tangent to the level sets of H.

A function f € C*°(M,R) such that {f,H} = %(f o ¢t) =0 is called
an integral of motion. Classical mechanics is all about finding integrals
of motion and the flow ¢!, from a given function H = T+ V corresponding
to a certain physical problem with kinetic energy 71" and under a potential
energy V.

Exercise 5.1 (Harmonic oscillator) The following Hamiltonian on T*R? =
R?? gives a flow on the sphere and generalises the classical two-dimensional
harmonic oscillator:

1
Hz,y) = 5@y

where it is used the weighted norm |[|(z,y)||, = [Z?Zl aj(:v?+y]2-)]1/2, a; > 0.
Find the flow and prove integrability. Find all periodic orbits for a level set
H~Y(h), h > 0. Hint: Identify R*! to C¢ by z = (21,...,2q) = (z1 +
Y1, .., 2q+iyq). The symplectic matrix J thus acts by multiplication with
iand Xp(z) = —iz.

In the following, we use the pull-back of a vector field X that is defined by
P*X(q) = dyp(q)~t X (¥(q)), for any ¢ € M. As an example, ¢4t Xy = Xp,
which is equivalent to say that the Hamiltonian flow is generated by the
vector field Xg.



Proposition 5.1 Let (M,w,H) be a Hamiltonian system.

e The level sets of H are invariant codimension-1 submanifolds of M
under the Hamiltonian flow (conservation of energy).

* Xpop = ¢* Xy, with ¢ € Symp(M,w). In other words, * Xy is the
Hamiltonian vector field for the Hamiltonian function H o 1), so ¢ is
what in the classical literature is called a canonical transformation.

Notice that, if H, H' are Hamiltonian functions on the same symplectic
manifold, then

Lx,(H) =dH (Xg)=wXy,Xn)
= —w(XH,XH/) = —dH(XHI)
= —Lx,,(H).

This is a somewhat interesting property of Hamiltonian systems.

If w is integrated along two-dimensional surfaces in M, we obtain the
so-called Poincaré integral invariant, which is preserved by the Hamiltonian
flow.

A good source of information on these topics are [2, 7].

6 Integrability

A Hamiltonian system (M, w, H) is completely integrable iff there exists
integrals of motion fi,..., fg in involution, i.e. {f;, fr} =0.

The Liouville-Arnol’d theorem states that integrable systems can be
written in action-angle variables in which there are explicit formulae for
their solutions. If the level set (a d-dimensional submanifold of M) of the
integrals of motion f; is compact and connected, it is diffeomorphic to T¢.
Moreover, in the neighbourhood of every such invariant torus one can find
new coordinates called the action-angle variables (6, 1) € T¢ x R?, obtained
from the initial variables (g,p) = (0, I) such that the Hamiltonian flow is
now simply given by

6,1) = (0H'/0I,0) .

In other words, the new Hamiltonian function H' = H o 1) depends only
on I and the phase space is foliated by invariant tori {I = const} on which
the flow is linear. This shows that the dynamics of integrable systems are
extremely simple.

The invariant level sets are also interesting from the symplectic point of
view. The symplectic form w vanishes on them and such submanifolds are
called Lagrangian. They play an important role in symplectic topology.

The type of dynamical behaviour exhibited by integrable systems (that
are very rare) is highly exceptional. An arbitrarily small perturbation may
destroy many of these invariant tori. On the other hand, if the frequency



vector w = OH'(Iy) /01 satisfies a diophantine condition (vector with ratio-
nally independent coordinates and not “well approximated” by others with
rationally dependent coordinates) and 9?H'/JI? is non-singular, then the
corresponding invariant torus {I = Iy} survives slightly deformed under suf-
ficiently small perturbations. This is the content of KAM theory (a rather
complete review on the subject is in [5]).

7 The fundamental case: R2?

The standard symplectic form on R?*? can be thought of a skew-symmetric
bilinear form on the tangent space T,R*? = R??, z = (z,y) € R%*¢: wy =
o5y daj A dy;.

There is a special group inside Symp(R?¢, wy) which is formed by the
symplectic linear maps and denoted by Sp(2d,R). Its elements can be rep-
resented by the associated matrix with respect to the Euclidean canonical
base, and can be defined by the conditions: ¥ € Sp(2d,R) iff U!JU = J iff
U*wy = wp. Hence, as it preserves the volume form as well, det(¥) = 1, and
Sp(2d,R) C SL(2d,R).

Exercise 7.1 Find an element of SL(4,R) not in Sp(4,R). Show that
Sp(2,R) = SL(2, R).

We can generalise the group of linear symplectomorphisms on R??¢ to
an arbitrary symplectic vector space (V,w). We denote it by Sp(V,w) and
its elements are linear isomorphisms ¥: V' — V which preserve w. Nev-
ertheless, from a result that states that all symplectic vector spaces of the
same dimension are linearly symplectomorphic (theorem 2.3 in [8]), we can
restrict our attention to (R*¢, wp).

The phase space using the action-angle variables discussed in Section 6
is T¢ x R?. Considering the universal cover of the d-torus, we can lift this
manifold to R?? preserving the periodicity on the angle variable. This is
indeed the standard way of treating the problem.

The above considerations together with Darboux’s theorem resume the
arguments to consider (R??, wg) as a paradigm for local symplectic manifolds
and linear symplectic spaces, worth studying in detail. An important fact is
that the structure wy is essentially unchanged by scalar multiplication. For
A € R, the linear map on R?*¢ given by ¢, (z) = Az acts on wy by a simple
rescaling, ¢iwp = A%wp. Since the global symplectic structures of interest
to us are invariant under rescaling, they are a reflection of what happens
inside small pieces of Euclidean space. Note also that the derivative at 0 of
a diffeomorphism ¢ satisfying ¢(0) = 0 is the limit of rescalings:

dp(0)v = 1im@, v e R¥M,

t—0

10



Thus one can think of the derivative as being given geometrically by looking
at what happens on smaller and smaller pieces of the manifold. By this
kind of zoomings and renormalisations, the local (or linear) theory may be
thought of as the limit of the global (nonlinear) theory.
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