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Abstra
t

Some basi
 introdu
tory fast notes on symple
ti
 topology and ge-

ometry with emphasis in symple
tomorphisms and Hamiltonian dy-

nami
s. To read this it is assumed some knowledge of di�erential

geometry.

1 Introdu
tion

It has been realised from the study of 
lassi
al me
hani
s, variational 
al
u-

lus, geometri
al opti
s, wave propagation, et
., the existen
e of a relevant set

of transformations of the phase spa
e of a dynami
al system. This is a sub-

set of the larger set of volume-preserving di�eomorphisms. Besides having

the in
ompressibility property, those di�eomorphisms preserve a symple
-

ti
 stru
ture of the phase spa
e, thus are 
alled symple
tomorphisms.

They form a subgroup and present parti
ular geometri
al and topologi
al

properties and global invariants.

A symple
ti
 stru
ture ! de�ned on an even-dimensional smooth

manifold M

2d

is a 
losed non-degenerate di�erential 2-form (a more de-

tailed a

ount on this de�nition is 
ontained in Se
tion 2). The pair (M;!)

is 
alled a symple
ti
 manifold.

The symple
tomorphisms preserve the symple
ti
 form, thus also the

naturally indu
ed volume form !

d

= !^� � �^!. In this way, symple
tomor-

phisms are volume-preserving and 
annot have attra
tors (this is known for

Hamiltonian 
ows by using Liouville's theorem { whi
h 
onne
ts to ergodi


theory). The preservation of the symple
ti
 stru
ture gives rise to this and

several more 
onstraints on the admissible dynami
al behaviour, as we shall

see in the following.

The word symple
ti
 was introdu
ed by Weyl [11℄ to des
ribe the �nite-

dimensional group of linear transformations preserving a non-degenerate

skew-symmetri
 bilinear form. The name symple
ti
 geometry was then

used by Siegel [9℄ to study the geometry of that linear group. Nowadays

�
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this nomen
lature is extended to non-linear symple
ti
 manifolds and maps.

As an additional remark, symple
ti
 geometry 
an be regarded in a sense as a


omplexi�
ation of Riemannian geometry (
f. Arnol'd'smathemati
al dream

of \simple
tization, 
omplexi�
ation and mathemati
al trinities" [3℄). The

matrix J =

�

0 I

�I 0

�

, an essential ingredient in me
hani
s, satis�es J

2

= �I,

an analogue of i in 
omplex analysis.

Symple
ti
 topology is more re
ent and aims to understand global sym-

ple
ti
 phenomena. It has be
ome an a
tive resear
h area of its own in,

roughly, three main lines of development brie
y summarised below (for more

details and insights on results see e.g. [1, 2, 4, 8℄):

� Variational methods and variational theory of 
apa
ities (Rabinowitz,

Weinstein, Conley, Zehnder).

� Flexibility/rigidity, almost-
omplex stru
tures asso
iated to a sym-

ple
ti
 form, theory of symple
ti
 homology (Gromov, Floer).

� Globalisation of the 
lassi
al idea of a generating fun
tion { related to

variational formulation (Viterbo, Chaperon, Laudenba
h, Sikorav).

To follow this notes it is assumed some knowledge of di�erential geome-

try, in parti
ular 
al
ulus of di�erential forms (a good referen
e is [6℄). The

appli
ation of this language to Hamiltonian dynami
s simpli�es its study, in


ontrast with traditional notation. That is adequate if we write fun
tions in

terms of 
oordinates e.g. H(q; p) when the 
oordinates are �xed. But when

we 
hange 
oordinates it is rather ambiguous to distinguish when H(q

0

; p

0

)

denotes the same fun
tion with new arguments, or is a di�erent fun
tion of

(q

0

; p

0

) with the same numeri
al value as H with respe
t to (q; p). The need

to 
onsider partial derivatives still in
reases the \entropy" on the reader's

mind!

2 Symple
ti
 stru
ture

We say that a di�erential 2-form ! 2 


2

(M) on a C

1

-manifold M

2d

is


losed if d! = 0. This is a 
ondition of geometri
al nature.

Moreover, ! is non-degenerate if, for every q 2 M and X 2 T

q

M ,

!(X;Y )(q) = 0 implies Y = 0. This is the same as to say that !

d

6= 0.

Thus, for every q 2M , the map

T

q

M ! T

�

q

M

X(q) 7! (�

X

!)(q) := !(X; �)(q)

is an isomorphism. So, there is a one-to-one 
orresponden
e between 1-forms

�

X

! 2 T

�

M and ve
tor �elds X 2 TM , or simply between the tangent and

the 
otangent bundles (as in Riemannian geometry).
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The 
onditions on the stru
ture imply thatM has to be even-dimensional

and orientable.

Example 2.1 If M = R

2d

, the 
anoni
al symple
ti
 form is given by

!

0

=

d

X

j=1

dx

j

^ dy

j

:

Noti
e that this form is exa
t sin
e we 
an write it as ! = d� where

� =

d

X

j=1

y

j

dx

j

:

Choosing v; w 2 R

2d

, !

0

is 
al
ulated like

!

0

(v; w) =

d

P

j=1

dx

j


 dy

j

(v; w) � dy

j


 dx

j

(v; w)

=

d

P

j=1

(v

j

w

d+j

� v

d+j

w

j

)

= v

t

Jw = hJv; wi;

where h�; �i is the standard Riemannian metri
 on R

2d

. Se
tion 7 
ontains

more on this 
ase. 2

Example 2.2 The most natural example of a symple
ti
 stru
ture is given

on the 
otangent bundle T

�

M of any given smooth manifold M . It is an

exa
t form ! = d� where � is related to the 1-forms of the se
tions of

T

�

M . We start by the 
oordinate-free de�nition and then present the lo
al


oordinates version.

A point in the 
otangent bundle T

�

M 
an be written as (q; �

q

), where

q belongs to the manifold M and �

q

is a 1-form on M taken on q, i.e.

�

q

2 T

�

q

M . The main ideia is that, for ea
h point in T

�

M , we 
an 
hoose � to

be essentially the 1-form �

q

itself. This is done via the natural proje
tion � of

T

�

M onM (more pre
isely, its derivative), sending tangent ve
tors at (q; �

q

)

to tangent ve
tors in the tangent spa
e of M at q. Consider the proje
tion

of the 
otangent bundle onto the manifold: � : T

�

M ! M; (q; �

q

) 7! q: Its

derivative at (q; �

q

) 2 T

�

M is a linear map

d�(q; �

q

) : T

(q;�

q

)

T

�

M ! T

q

M; d�(q; �

q

) (�; �) = �:

The 1-form � : TT

�

M ! R is then 
hosen to be at ea
h point (q; �

q

) 2 T

�

M

given by �

(q;�

q

)

= �

q

Æ d�(q; �

q

). In what follows we show that the so-
alled


anoni
al form on the 
otangent bundle ! = d� is non-degenerate.
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In lo
al 
oordinates on T

�

M , (x(q); y(�

q

)) 2 R

2d

,

d�(q; �

q

)

�

�x

j

=

�

�x

j

and d�(q; �

q

)

�

�y

j

= 0:

So, we 
an write the 1-form on M as �

q

=

P

j

y

j

dx

j

. Therefore, � =

P

j

y

j

dx

j

and ! = !

0

whi
h is obviously non-degenerate. 2

In the same way as before, we 
an identify a ve
tor �eld X with the

(2d� 1)-form �

X

!

d

.

The identi�
ation of ve
tor �elds with forms is quite important be
ause

it allows us to des
ribe ve
tor �elds that generate 
ows preserving the stru
-

ture. So, the nature of the systems is fully 
ontained in the 
hoi
e of the

form.

Another property arising from the de�nitions of forms is the following

Theorem 2.3 (Darboux) Let ! be a symple
ti
 or volume-preserving form

on M and B a neighbourhood of q 2 M . Then, there is a lo
al di�eomor-

phism  : B ! R

2d

su
h that  

�

!

0

= !.

Note that Darboux's theorem implies that there are no lo
al symple
ti


or volume invariants. So, the theory of symple
ti
 invariants and obstru
-

tions (see Se
tion 3 for examples) are eminently global.

Two symple
ti
 manifolds (M

1

; !

1

) and (M

2

; !

2

) are said to be symple
-

tomorphi
 if there is a di�eomorphism f : M

1

!M

2

satisfying f

�

!

2

= !

1

.

There is also the 
on
ept of �nite or in�nite dimensional Poisson mani-

folds. The basi
 stru
ture is the Poisson bra
ket on the spa
e of fun
tions

rather than 2-forms. We will only mention that a Poisson manifold is sym-

ple
ti
 by relating the symple
ti
 stru
ture with the Poisson bra
ket (
f.

Appendix 14 of [2℄).

3 Examples of symple
ti
 phenomena

The following examples show that the behaviour of symple
tomorphisms

may be di�erent from that of volume-preserving di�eomorphisms. The 
ase

of dimM = 2 is di�erent though, sin
e there the group of area-preserving

di�eomorphisms 
oin
ides with the one of symple
tomorphisms.

Example 3.1 (Nonsqueezing and the symple
ti
 
amel) To understand

the geometry of a map one usually starts by looking at the image of sim-

ple obje
ts like balls. In the 
ase of volume-preserving di�eomorphisms the

ball is di�eomorphi
 to the image and both have the same volume. Gro-

mov's nonsqueezing theorem (1985) proves that a standard ball 
annot be

symple
ti
ally embedded into a thin 
ylinder ex
ept for dimM = 2. Thus

there are volume-preserving di�eomorphisms that are not symple
ti
. Also,
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it shows that there is a basi
 property of the ball and the 
ylinder whi
h

is preserved by symple
tomorphisms. These universal obsta
les in the sym-

ple
ting embedding led to the de�nition of Gromov's width and symple
ti



apa
ities.

A related problem 
onsists of determining the possibility of 
ontinuously

transforming by simple
tomorphisms a ball (or a 
amel!) through a small

\hole in a wall". Gromov's methods answered negatively for dimension 4 or

higher. Again, it is possible to do so in dimension 2 as the answer is true

for area-preserving di�eomorphisms. 2

Example 3.2 (Symple
ti
 �xed point theorems) Consider the symple
-

ti
 2-torus T

2

= R

2

=Z

2

whose symple
ti
 stru
ture is inherited from R

2

, i.e.

the standard area form. Let H be a time-independent Hamiltonian on T

2

and � the time-1 map of the asso
iated 
ow (a symple
tomorphism). Now,

we want to 
ount the number of �xed points of �. We 
an start by looking at

the 
riti
al points of H as the equation of motion is ( _x; _y) = JrH(x; y) = 0.

If H is suÆ
iently C

2

-small, those are the only �xed points, so, we 
an 
ount

the number of �xed points by the 
riti
al points of H. It is at least two sin
e

T

2

is 
ompa
t and every non-
onstant fun
tion has distin
t maximum and

minimum. In fa
t, the minimum number of 
riti
al points, Crit(M), taken

over all smooth fun
tions on a 
ompa
t manifold M is a topologi
al invari-

ant of M (using Morse theory of di�erential geometry). It is known that

Crit(T

2

) = 3.

For any 
ompa
t symple
ti
 manifold and an arbitrary large Hamiltonian


ow whether depending on time or not, Arnol'd 
onje
tured that the same

kind of estimates on the number of �xed points remained true. This 
on-

je
ture for T

2


an be 
onsidered as a generalisation of the Poin
ar�e-Birkho�

theorem (also known as Poin
ar�e's last geometri
 theorem) on the existen
e

of two �xed points for area-preserving twist maps (for short, twist maps) of

the annulus.

The 
onne
tion between �xed points of a mapping and 
riti
al points of

the generating fun
tion is underneath the \duality" between twist maps and

Frenkel-Kontorova models. The latter being one-dimensional dis
rete elasti



hains of os
illators in a periodi
 potential with gradient-like dynami
s (
f.

[10℄). 2

4 Di�eomorphisms and ve
tor �elds

Consider a symple
ti
 manifold (M;!) and the indu
ed volume form v =

!

d

(sometimes 
alled symple
ti
 volume). Let us introdu
e the following

notations:

� Di�(M) is the group of di�eomorphisms of M ,
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� Di�

vol

(M;v) = f 2 Di�(M) :  

�

v = vg, the subgroup of volume-

preserving di�eomorphisms of M ,

� Symp(M;!) = f 2 Di�(M) :  

�

! = !g, the subgroup of symple
to-

morphisms of (M;!).

Symple
tomorphisms 
an also be de�ned as being the ones among all dif-

feomorphisms that preserve the Poisson bra
ket: for any f; g 2 C

1

(M;R),

ff; gg Æ  = ff Æ  ; g Æ  g i�  2 Symp(M;!):

Let X (M) stand for the set of every smooth ve
tor �elds on M . Ve
tor

�elds 
an be regarded as di�erential operators on fun
tions. If X 2 X (M)

and f 2 C

1

(M;R), we have X f = df(X) = L

X

(f), where L

X

is the Lie

derivative with respe
t to X. When evaluated at q 2 M , this is the dire
-

tional derivative of f at q along X(q).

We 
an 
lassify the elements of X (M) by the following de�nitions:

� X 2 X (M) is a symple
ti
 ve
tor �eld i� �

X

! is 
losed, i.e. d(�

X

!) =

0 or equivalently by Cartan's formula L

X

(!) = d(�

X

!) + �

X

(d!) = 0.

This means that the symple
ti
 form is 
onstant along the 
ow of X.

We therefore write X 2 X (M;!).

� X 2 X (M) is a Hamiltonian ve
tor �eld i� �

X

! is exa
t, i.e.

�

X

! = dH for some primitive fun
tion H 2 C

1

(M;R) 
alled the

Hamiltonian fun
tion. In this 
ase a fun
tion identi�es (generates)

a ve
tor �eld and we denote X by X

H

.

It is 
lear that Hamiltonian implies symple
ti
, be
ause exa
t implies


losed. Lo
ally, any symple
ti
 ve
tor �eld is Hamiltonian. Globally, when-

ever the (de Rham) �rst 
ohomology group of M vanishes: H

1

(M) = 0 (i.e.

all the 
losed 1-forms are exa
t), symple
ti
 ve
tor �elds are Hamiltonian.

Exer
ise 4.1 Let M = T

2

and ! = dx ^ dy. Show that the ve
tor �elds

X

1

=

�

�x

and X

2

=

�

�y

are symple
ti
 but not Hamiltonian.

Proposition 4.1 Let M be a 
losed (
ompa
t and without boundary) man-

ifold, and the 1-parameter family  

t

2 Di�(M) generated by the 1-family of

ve
tor �elds X

t

2 X (M), i.e.

d

dt

 

t

= X

t

Æ  

t

;  

0

= Id:

Then:

�  

t

2 Symp(M;!) i� X

t

2 X (M;!). So, symple
ti
 ve
tor �elds gen-

erate symple
tomorphisms. (Noti
e that  

t

is a isotopy to the iden-

tity.)
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� If Y;Z are symple
ti
 ve
tor �elds, their 
ommutator [Y;Z℄ = L

Y

(Z) is

a Hamiltonian ve
tor �eld with Hamiltonian fun
tion !(Y;Z). Thus,

we write [Y;Z℄ = X

!(Y;Z)

.

Remark 4.2 From the proposition above, given the Hamiltonian fun
tions

f; g 2 C

1

(M;R) and their respe
tive Hamiltonian ve
tor �elds X

f

;X

g

,

we have !(X

f

;X

g

) = ff; gg and X

ff;gg

= [X

f

;X

g

℄. Therefore, a Poisson

manifold is symple
ti
.

Any smooth 1-parameter family  

t

in Symp(M;!), t 2 [0; 1℄, with

 

0

= Id is 
alled a symple
ti
 isotopy on M . This means that  

1

is

symple
ti
 isotopi
 to the identity. We 
an show that su
h isotopies are

always generated by a ve
tor �eld as in Proposition 4.1.

� A symple
ti
 isotopy is generated by a unique 1-family of symple
ti


ve
tor �elds X

t

2 X (M;!).

� If �

X

t
! is exa
t, we 
an �nd a smooth 1-family of time-dependent

Hamiltonians H

t

2 C

1

(M;R) su
h that X

t

= X

H

t
. So,  

t

is a

Hamiltonian isotopy.

In parti
ular, if M is simply 
onne
ted, every symple
ti
 isotopy is

Hamiltonian.

A symple
tomorphism is Hamiltonian if it is Hamiltonian-isotopi
 to the

identity. The spa
e of Hamiltonian symple
tomorphisms is denoted by

Ham(M;!) and it is a normal subgroup of Symp(M;!). The 
orresponding

Lie algebra is the algebra of all Hamiltonian ve
tor �elds.

Exer
ise 4.2 Show that forM = T

2

and the standard area form dx^dy, the

symple
tomorphisms isotopi
 to the identity preserve the \
entre of gravity",

i.e. they are of the form:

 (x; y) = (x+ f(x; y); y + g(x; y)); where

Z

T

2

f =

Z

T

2

g = 0:

There is an interesting relation between the Lie groups of di�eomor-

phisms and the 
orresponding Lie algebras with respe
t to the 
ommuta-

tor [�; �℄ for ve
tor �elds, see Table 4. It is opportune to remark also that

C

1

(M;R) is a Lie algebra under the Poisson bra
ket. Furthermore, the

transformation H 7! X

H

from (C

1

(M;R); f�; �g) to the spa
e of Hamil-

tonian ve
tor �elds with the 
ommutator operator, is a morphism of Lie

algebras.

5 Hamiltonian dynami
s

A Hamiltonian system is a triple (M;!;H) where (M;!) is a symple
ti


manifold and H 2 C

1

(M;R) is the Hamiltonian fun
tion. The ve
tor �eld
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Table 1: Comparing the 
lasses of di�eomorphisms of M .

Lie group Lie algebra of ve
tor �elds

Di�(M) X (M) di�erential geometry

Di�

vol

(M;v) divergen
e-free in
ompressible hydrodynami
s

Symp(M;!) lo
ally Hamiltonian symple
ti
 geometry

Ham(M;!) Hamiltonian Hamiltonian dynami
s

X

H

2 X (M;!) determined by the identity �

X

H

! = dH is the Hamiltonian

ve
tor �eld asso
iated to H. (Noti
e that H is not a fun
tion of time t. This


an be always the 
ase by 
onsidering the extended manifold M

0

= M � R

and a point on it is (q; t).)

The ve
tor �eld X

H

generates the Hamiltonian 
ow, i.e. a smooth

1-parameter group of Hamiltonian symple
tomorphisms �

t

H

2 Ham(M;!)

su
h that

d

dt

�

t

H

= X

H

Æ �

t

H

; �

0

H

= Id:

In these 
onditions, �

t

H

is an isotopy for a time-independent Hamiltonian.

We remark also that

L

X

H

(H) = X

H

H = dH(X

H

) = (�

X

H

!)X

H

= !(X

H

;X

H

) = 0:

So, the Hamiltonian ve
tor �eld X

H

is tangent to the level sets of H.

A fun
tion f 2 C

1

(M;R) su
h that ff;Hg =

d

dt

(f Æ �

t

H

) = 0 is 
alled

an integral of motion. Classi
al me
hani
s is all about �nding integrals

of motion and the 
ow �

t

H

from a given fun
tion H = T + V 
orresponding

to a 
ertain physi
al problem with kineti
 energy T and under a potential

energy V .

Exer
ise 5.1 (Harmoni
 os
illator) The following Hamiltonian on T

�

R

d

=

R

2d

gives a 
ow on the sphere and generalises the 
lassi
al two-dimensional

harmoni
 os
illator:

H(x; y) =

1

2

k(x; y)k

2

a

;

where it is used the weighted norm k(x; y)k

a

= [

P

d

j=1

a

j

(x

2

j

+y

2

j

)℄

1=2

, a

j

> 0.

Find the 
ow and prove integrability. Find all periodi
 orbits for a level set

H

�1

(h), h > 0. Hint: Identify R

2d

to C

d

by z = (z

1

; : : : ; z

d

) = (x

1

+

iy

1

; : : : ; x

d

+ iy

d

). The symple
ti
 matrix J thus a
ts by multipli
ation with

i and X

H

(z) = �iz.

In the following, we use the pull-ba
k of a ve
tor �eldX that is de�ned by

 

�

X(q) = d (q)

�1

X( (q)), for any q 2M . As an example, �

t�

H

X

H

= X

H

,

whi
h is equivalent to say that the Hamiltonian 
ow is generated by the

ve
tor �eld X

H

.
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Proposition 5.1 Let (M;!;H) be a Hamiltonian system.

� The level sets of H are invariant 
odimension-1 submanifolds of M

under the Hamiltonian 
ow (
onservation of energy).

� X

HÆ 

=  

�

X

H

, with  2 Symp(M;!). In other words,  

�

X

H

is the

Hamiltonian ve
tor �eld for the Hamiltonian fun
tion H Æ  , so  is

what in the 
lassi
al literature is 
alled a 
anoni
al transformation.

Noti
e that, if H;H

0

are Hamiltonian fun
tions on the same symple
ti


manifold, then

L

X

H

(H

0

) = dH

0

(X

H

) = !(X

H

0

;X

H

)

= �!(X

H

;X

H

0

) = �dH(X

H

0

)

= �L

X

H

0

(H):

This is a somewhat interesting property of Hamiltonian systems.

If ! is integrated along two-dimensional surfa
es in M , we obtain the

so-
alled Poin
ar�e integral invariant, whi
h is preserved by the Hamiltonian


ow.

A good sour
e of information on these topi
s are [2, 7℄.

6 Integrability

A Hamiltonian system (M;!;H) is 
ompletely integrable i� there exists

integrals of motion f

1

; : : : ; f

d

in involution, i.e. ff

j

; f

k

g = 0.

The Liouville-Arnol'd theorem states that integrable systems 
an be

written in a
tion-angle variables in whi
h there are expli
it formulae for

their solutions. If the level set (a d-dimensional submanifold of M) of the

integrals of motion f

j

is 
ompa
t and 
onne
ted, it is di�eomorphi
 to T

d

.

Moreover, in the neighbourhood of every su
h invariant torus one 
an �nd

new 
oordinates 
alled the a
tion-angle variables (�; I) 2 T

d

� R

d

, obtained

from the initial variables (q; p) =  (�; I) su
h that the Hamiltonian 
ow is

now simply given by

(

_

�;

_

I) =

�

�H

0

=�I; 0

�

:

In other words, the new Hamiltonian fun
tion H

0

= H Æ  depends only

on I and the phase spa
e is foliated by invariant tori fI = 
onstg on whi
h

the 
ow is linear. This shows that the dynami
s of integrable systems are

extremely simple.

The invariant level sets are also interesting from the symple
ti
 point of

view. The symple
ti
 form ! vanishes on them and su
h submanifolds are


alled Lagrangian. They play an important role in symple
ti
 topology.

The type of dynami
al behaviour exhibited by integrable systems (that

are very rare) is highly ex
eptional. An arbitrarily small perturbation may

destroy many of these invariant tori. On the other hand, if the frequen
y

9



ve
tor ! = �H

0

(I

0

)=�I satis�es a diophantine 
ondition (ve
tor with ratio-

nally independent 
oordinates and not \well approximated" by others with

rationally dependent 
oordinates) and �

2

H

0

=�I

2

is non-singular, then the


orresponding invariant torus fI = I

0

g survives slightly deformed under suf-

�
iently small perturbations. This is the 
ontent of KAM theory (a rather


omplete review on the subje
t is in [5℄).

7 The fundamental 
ase: R

2d

The standard symple
ti
 form on R

2d


an be thought of a skew-symmetri


bilinear form on the tangent spa
e T

z

R

2d

= R

2d

, z = (x; y) 2 R

2d

: !

0

=

P

d

j=1

dx

j

^ dy

j

:

There is a spe
ial group inside Symp(R

2d

; !

0

) whi
h is formed by the

symple
ti
 linear maps and denoted by Sp(2d;R). Its elements 
an be rep-

resented by the asso
iated matrix with respe
t to the Eu
lidean 
anoni
al

base, and 
an be de�ned by the 
onditions: 	 2 Sp(2d;R) i� 	

t

J	 = J i�

	

�

!

0

= !

0

. Hen
e, as it preserves the volume form as well, det(	) = 1, and

Sp(2d;R) � SL(2d;R).

Exer
ise 7.1 Find an element of SL(4;R) not in Sp(4;R). Show that

Sp(2;R) = SL(2;R).

We 
an generalise the group of linear symple
tomorphisms on R

2d

to

an arbitrary symple
ti
 ve
tor spa
e (V; !). We denote it by Sp(V; !) and

its elements are linear isomorphisms 	: V ! V whi
h preserve !. Nev-

ertheless, from a result that states that all symple
ti
 ve
tor spa
es of the

same dimension are linearly symple
tomorphi
 (theorem 2.3 in [8℄), we 
an

restri
t our attention to (R

2d

; !

0

).

The phase spa
e using the a
tion-angle variables dis
ussed in Se
tion 6

is T

d

� R

d

. Considering the universal 
over of the d-torus, we 
an lift this

manifold to R

2d

preserving the periodi
ity on the angle variable. This is

indeed the standard way of treating the problem.

The above 
onsiderations together with Darboux's theorem resume the

arguments to 
onsider (R

2d

; !

0

) as a paradigm for lo
al symple
ti
 manifolds

and linear symple
ti
 spa
es, worth studying in detail. An important fa
t is

that the stru
ture !

0

is essentially un
hanged by s
alar multipli
ation. For

� 2 R, the linear map on R

2d

given by �

�

(x) = �x a
ts on !

0

by a simple

res
aling, �

�

�

!

0

= �

2

!

0

. Sin
e the global symple
ti
 stru
tures of interest

to us are invariant under res
aling, they are a re
e
tion of what happens

inside small pie
es of Eu
lidean spa
e. Note also that the derivative at 0 of

a di�eomorphism � satisfying �(0) = 0 is the limit of res
alings:

d�(0) v = lim

t!0

�(tv)

t

; v 2 R

2d

:

10



Thus one 
an think of the derivative as being given geometri
ally by looking

at what happens on smaller and smaller pie
es of the manifold. By this

kind of zoomings and renormalisations, the lo
al (or linear) theory may be

thought of as the limit of the global (nonlinear) theory.
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