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Abstract. We develop a renormalization group approach to the
problem of reducibility of quasi-periodically forced circle flows. We
apply the method to prove a reducibility theorem for such flows.

1. Introduction

In this paper, we study the dynamics of quasi-periodically time-
dependent ordinary differential equations on the circle T1 = R/(2πZ).
These equations correspond to skew-product flows generated by vector
fields on Td × T1 whose dynamics are given by

ẋ = ω,

ẏ = f(x, y),
(1.1)

where (x, y) ∈ Td×T1, ω ∈ Rd and f : Td×T1 → R is real analytic. An
important problem in the dynamics of ordinary differential equations
is to establish conditions under which one can analytically conjugate
the flow φt generated by (1.1) to the linear flow of a constant vector
field. If that is possible, we say that f is analytically or Cω-reducible.

An important conjugacy invariant is the rotation number of f , i.e.,
its time average along the orbit,

rot f = lim
t→+∞

1

t

∫ t

0

f ◦ φs(x, y) ds, (1.2)

for any (x, y) ∈ Td × T1 (see Section 2.3).
If f depends only on y (or ω = 0), the dynamical system given

by (1.1) is integrable, since the second equation then yields an au-
tonomous vector field on the circle. In that case, zeros of f correspond
to the fixed points of the dynamics and all orbits converge to them. If f
has no zeros, then all orbits are periodically winding around the circle
and the flow is uniquely ergodic for some absolutely continuous invari-
ant measure µ. The reducibility conjugacy can then be constructed us-
ing the solution φt2 of the second equation in (1.1), as (x, y) 7→ (x, φT2 y),
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where T is the least period of the motion given by the frequency of the
system T−1 = rot f =

∫
T1 f dµ.

We are interested in the general case in which f depends on both x
and y, i.e., non-autonomous circle flows. When d = 1, the system (1.1)
corresponds to a periodic perturbation of the circle flow, i.e., to a flow
on T2. Herman’s theory [8] (further developed by Yoccoz [21]) implies
that if rot f/ω satisfies Yoccoz’s H arithmetical condition [21, 22], then
the system is Cω-reducible.

Similar conclusions arise in the case when ω ∈ Qd \ {0}, d > 1.
Without loss of generality, up to a time rescaling, we can take ω ∈ Zd.
By a linear change of the basis for the torus Td, we can reduce our
initial system to ẋ = (1, 0, . . . , 0), ẏ = f(x, y). By writing x = (t, λ),

we obtain the systems: ṫ = 1, λ̇ = 0, ẏ = Fλ(t, y) = f((t, λ), y). For
each λ ∈ Td−1, this corresponds again to a vector field on T2.

We will now restrict our considerations to ω ∈ Rd\Qd, d > 1. In
fact, we will focus only on incommensurate frequency vectors ω, i.e.,
vectors whose components are rationally independent. For incommen-
surate ω, the main difficulty in the analysis is related to the existence
of small divisors. In this case, there are already some results obtained
by KAM (Kolmogorov-Arnol’d-Moser)-type methods [1, 2, 16, 19]. In
this paper, we develop a different approach to the problem, based on
a renormalization method. This renormalization approach is also dif-
ferent than that exploited in [5, 6, 7], which is based on resummation
of a perturbation series in analogy to quantum field theory. While in
KAM theory one typically encounters small divisors in a finite number
of narrow regions surrounding some resonant planes, in the problem at
hand, we encounter and develop an approach to deal with an infinite
number of resonant planes (see Remark 1.4). The approach developed
here should, therefore, also be useful for the construction of quasiperi-
odic solutions, i.e., invariant tori, for PDEs, where one necessarily has
to deal with an infinite number of resonant planes.

On a space of vector fields X = (ω, f) of the form (1.1), we define a
renormalization operator R (see Section 3) as

R(X) = η−1T ∗U∗X(X), (1.3)

where η ∈ (0, 1) is the time rescaling parameter, UX is a change of
variables chosen such that U∗X(X), i.e., the pullback of X under UX ,
is in an appropriate normal form (see Section 3.2), and T is a scaling
(x, y) 7→ (Tx, y), defined by a matrix T ∈ SL(d,R). The transforma-
tion R will be constructed such that it preserves the form of the vector
field X = (ω, f) and we will define the induced map R : f 7→ R(f) by
R(ω, f) = (ω,R(f)). Note that f is a non-autonomous vector field on
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a circle and R defines a renormalization operator on a Banach space
of these vector fields.

We will consider vector fields close to Y = (ω, θ), with ω ∈ BC and
θ ∈ DCω. We denote by BC the set of Brjuno vectors ω ∈ Rd, i.e.,
vectors that satisfy [3, 4, 20]

∞∑
n=1

2−n ln(1/Ωn) <∞ , Ωn = min
ν∈V, 0<|ν|<2n

|ω · ν|, (1.4)

where V = Zd. Here, | · | denotes the `1 norm of a vector in Rd, and
dot denotes the usual scalar product of vectors in Rd. Given ω ∈ Rd,
τ,κ ≥ 0, and C > 0, we define DCω(C, τ,κ) to be the set of all
θ ∈ R \ {0} such that

|ω · ν + kθ| > C

|ν|d+τ |k|κ
, for all k ∈ Z\{0}, ν ∈ V \ {0}. (1.5)

We further define

DCω(τ,κ) =
⋃
C>0

DCω(C, τ,κ) and DCω =
⋃
τ,κ≥0

DCω(τ,κ).

Since we will perform scaling with matrices T ∈ SL(d,R), we will
consider functions with periodicity of a simple lattice Z in Rd that
is more general that 2πZd. Functions that are invariant under Z-
translations can be identified with functions on Td := Rd/Z or, equiv-
alently with quasiperiodic functions on Rd with frequency module in
the dual lattice V (the set of points v ∈ Rd satisfying eiv·z = 1, for all
z ∈ Z). For convenience, we will perform a linear change of coordi-
nates in Rd such that ω = (1, 0, . . . , 0). The lattice obtained from 2πZd
under this change of coordinates in Rd will be denoted by Z0 and its
dual lattice by V0.

We consider vector fields X of the form X = (ω, f) that are close
to Y = (ω, θ), with f analytic on a complex neighborhood of Dρ,r of
Td × T1 characterized by | Imxi| < ρ and | Im y| < r. In the following,
we will refer to these vector fields as vector fields of the form (ω, f).
In Section 2.2, we will introduce the spaces of vector fields of the form
(ω, f) with f analytic on Dρ,r, with frequency module in V , and the
corresponding Banach spaces Aρ,r(V) of functions f . If r = ρ, we will
denote these spaces and the corresponding domains simply by Aρ(V)
and Dρ, respectively.

Let E be a projection operator onto the subspace of constant vector
fields (either on the circle or on Td×T1), given by the averaging of the
function over Td × T1 (see Section 2.2).
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The main results of this paper can be summarized in the following
theorem.

Theorem 1.1. Let %, r > 0 and let ω ∈ BC and θ ∈ DCω. There exist
a sequence of matrices Tn ∈ SL(d,R), a sequence of time rescaling pa-
rameters ηn ∈ (0, 1), and a corresponding sequence of renormalization
operators Rn, n ∈ N, of the form (1.3), such that the corresponding
operators Rn are analytic from an open neighborhood Dn−1 of θn−1,
where θn = η−1n θn−1, θ0 = θ, in Aρn−1,rn−1(Vn−1), to Aρn,rn(Vn), where
Vn = TnVn−1. The set W of infinitely renormalizable vector fields f0 in
D0, characterized by the property that fn = Rn(fn−1) belongs to Dn, for
every n ∈ N, is the graph of an analytic function W : (I−E)D0 → ED0

that satisfies W (0) = θ0 and DW (0) = 0. In particular, if f ∈ D0 and
rot f = θ, then f ∈ W. If ρ > % + δ, ρ > r + δ and δ > 0, then
every vector field X = (ω, f) with f ∈ W ∩ Aρ(V0) is analytically re-
ducible via an analytic conjugacy of the form ΓX = id +(0, ψX), with
ψX ∈ Aδ(V0), that conjugates the flow of X and the flow of Y = (ω, θ).

An immediate corollary of Theorem 1.1 is the following.

Corollary 1.2. For every ω ∈ BC and θ ∈ DCω, there is an open ball
B centered at θ in Aρ(V0), such that every vector field X = (ω, f), with
f ∈ B and rot f = θ, is analytically reducible to Y = (ω, θ).

Remark 1.3. Notice that the renormalization operators Rn are well-
defined on {ω}×Dn, which are open in the space of vector fields of the
form (ω, f), and that {ω}×W is the stable manifold for this sequence
of renormalization operators.

Remark 1.4. The renormalization approach developed here is similar
to, but technically more involved than, the renormalization approach
to the construction of invariant tori for Hamiltonian and other vec-
tor fields [10, 11, 12, 14, 17, 18], reducibility of skew-product flows on
Td×SL(2,R) [15] and construction of lower-dimensional tori for Hamil-
tonian flows [13]. The small divisors encountered in these problems are
produced by frequencies ν ∈ Zd that lie in the “resonant” regions,
outside of certain “non-resonant” cones, surrounding some resonant
planes, perpendicular to ω. In the case of maximal-dimensional KAM
tori, the small divisors are given by |ω · ν| and, thus, there is only one
such a plane [10, 11, 12, 14]. The renormalization transformations (see
Section 3) then eliminate the non-resonant modes of a vector field and
transform some of the remaining resonant modes into non-resonant. In
the case of reducibility of skew-product flows on Td×SL(2,R), there is
an additional resonant plane surrounded by frequencies corresponding
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to small divisors |ω · ν − 2ρ|, where ±iρ are the eigenvalues of a ma-
trix in the Lie algebra sl(2,R) [15]. In the case of lower-dimensional
tori [13], there are finitely many resonant planes corresponding to small
divisors |ω · ν + Ω · V |, where Ω ∈ RD is vector of normal frequencies
and 0 < |V | ≤ 2. In the problem at hand, we encounter and develop a
renormalization approach to deal with an infinite number of resonant
planes, corresponding to small divisors of the form |ω · ν + kθ|, for
k ∈ Z.

The paper is organized as follows. In Section 2, we introduce the
spaces of vector fields that we consider. In Section 3, we construct the
renormalization scheme and prove the convergence of vector fields of
the form (1.1), on the stable manifold of the renormalization operator,
towards the constant vector field. In Section 4, we construct analytic
conjugacy between the flows of a vector field X = (ω, θ) on the stable
manifold and a constant vector field Y = (ω, θ), and prove Theorem 1.1.

2. Preliminaries

2.1. Skew-product vector fields and changes of coordinates.
Recall that we are interested in skew-product vector fields on Td×T1,
of the form

X(x, y) = (ω, f(x, y)), (2.1)

with ω ∈ Rd and f : Td × T1 → R. We will refer to Td as the base
and to T1 as the fiber. The dynamics generated by X on the base is
trivially given by x 7→ x+ ω t mod Z.

We will consider real analytic diffeomorphisms H ∈ Diffω(Td × T1)
which preserve the space of skew-product vector fields and are of the
type

H(x, y) = (x, y + h(x, y)), (2.2)

where (x, y) ∈ Td × T1 and h ∈ Cω(Td × T1,T1). We call them skew-
product diffeomorphisms.

The action of H on X = (ω, f) is given by the pull-back

H∗X = (DH)−1X ◦H.

As the form of the vector field is preserved, we abuse the notation in
order to write the pull-back as acting on the fiber component of the
vector field

H∗f = (1 + ∂yh)−1(−ω · ∂xh+ f ◦H). (2.3)

The flow φ′t generated by H∗X is related to the flow φt of X by

φ′t = H−1 ◦ φt ◦H. (2.4)
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The vector fields and skew-product diffeomorphisms considered are
real-analytic and, thus, can be extended to a complex domain.

2.2. Spaces and norms. We will use ‖ · ‖ and | · | to denote the `∞

and `1 norms, respectively, of a vector in Rn or Cn.
Let ρ, r > 0 and let

Dρ,r =
{

(x, y) ∈ Cd × C : ‖ Imx‖ < ρ, | Im y| < r
}
. (2.5)

In this paper, we consider functions with periodicity of Z × 2πZ,
where Z is a lattice Z ⊂ Rd. Recall that for a lattice Z ⊂ Rd, the dual
lattice is defined as

V = {v ∈ Rd : (∃z ∈ Z) eiz·v = 1}. (2.6)

We will denote by N , the lattice Z which is dual to 2πZ.
The norm of a function f , analytic on Dρ,r, that can be expanded as

f(x, y) =
∑

v∈V,k∈N

fv,k e
ix·v+iyk, (2.7)

is given by

‖f‖ρ,r =
∑

v∈V,k∈N

|fv,k| eρ|v|+r|k|. (2.8)

Given any K ∈ N, we denote by IKf the truncation of f correspond-
ing to the modes with |k| ≤ K, i.e,

IKf(x, y) =
∑

v∈V,k∈N ,|k|≤K

fv,k e
ix·v+iyk.

We denote by I the identity operator acting as If = f , and by E the
average of f , given by the action

Ef =

∫
T1

∫
Td
f(x, y) dx dy = f0,0.

The Banach space of functions f , analytic on Dρ,r, for which the
norm ‖f‖ρ,r is finite will be denoted by Aρ,r(V). Similarly, A′ρ,r(V) is
the Banach spaces of functions f , analytic on Dρ,r, for which the norm

‖f‖′ρ,r = ‖f‖ρ,r +
∑

v∈V,k∈N

(‖v‖+ |k|) |fv,k| eρ|v|+r|k|,

is finite. Whenever there is no ambiguity, we avoid writing V explicitly.
We present several properties of the above norms, which will be used

throughout the paper without an explicit reference to them.

Lemma 2.1. Let f, g ∈ A′ρ,r, r′ < r, K ∈ N and δ > 0. Let also
U(x, y) = (x, y + u(x, y)) be a skew-product diffeomorphism satisfying
‖u‖ρ,r′ < (r − r′)/2. Then,
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• supx∈Dρ,r |f(x)| ≤ ‖f‖ρ,r ≤ ‖f‖′ρ,r ≤ (1 + 2δ−1) ‖f‖ρ+δ,r+δ,
• ‖(I− IK)f‖ρ,r′ ≤ e−K(r−r′)‖f‖ρ,r,
• ‖f g‖ρ,r ≤ ‖f‖ρ,r‖g‖ρ,r,
• ‖f g‖′ρ,r ≤ ‖f‖′ρ,r‖g‖′ρ,r.
• ‖f ◦ U‖ρ,r′ ≤ ‖f‖ρ,r,
• ‖f ◦ U − f‖ρ,r′ ≤ 2(r − r′)−1‖f‖ρ,r‖u‖ρ,r′,

Proof. The proof of these inequalities is straightforward and will be
omitted. In the proof of the last inequality, one uses Cauchy’s estimate
for the derivative. �

2.3. Rotation number. Define the (fibered) rotation number of f at
(x, y) ∈ Rd × R as

rot f(x, y) = lim
t→+∞

φ̃t2(x, y)− y
t

mod 2π,

where φ̃t2 = π2φ̃
t stands for the last component of a lift φ̃t of the flow

φt to the universal cover Rd+1. Some versions of the following claim
can be found in the literature. We include here a version relevant for
our systems.

Proposition 2.2. If f ∈ C0(Td×T1,R) and ω ∈ Rd is incommensurate
with respect to Z, then rot f exists and it is constant everywhere on
Rd × R1.

Proof. Notice that, for every x ∈ Td and every t ∈ R, the map y 7→
φt2(x, y) is an orientation-preserving diffeomorphism of the circle satis-

fying φ̃t2(x, y + 2π) = φ̃t2(x, y) + 2π. So, if y < y′ < y + 2π, one gets

|φ̃t2(x, y′)− φ̃t2(x, y)| < 2π. Assume that the rotation number exists for
some (x, y). Hence,∣∣∣∣∣ φ̃t2(x, y′)− y′t

− φ̃t2(x, y)− y
t

∣∣∣∣∣ ≤
∣∣∣∣∣ φ̃t2(x, y′)− φ̃t2(x, y)

t

∣∣∣∣∣+
∣∣∣∣y′ − yt

∣∣∣∣ < 4π

t
,

for all t > 0. Taking the limit t→ +∞, one obtains that rot f(x, y) =
rot f(x) does not depend on y. Taking, e.g., y = 0, it remains to show
that rot f(x) exists for all x and does not depend on x.

Let At(x) = φ̃t(x, 0) and Aqt (x) = φ̃t(x, q). Therefore, Aqt (x + p) =
At(x) + (p, q) for (p, q) ∈ Z × (2πZ). Moreover, define at(x) = π2At(x)
and aqt (x) = π2A

q
t (x). We want to show that limt→+∞ at(x)/t exists

and is independent of x.
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We begin with some estimates. For s, s′ > 0 and (p, q) ∈ Z × (2πZ)
satisfying ‖As(x)− (p, q)‖ < 1, we have

at(x)

t
=− 1

s′t

∫ t

0

[as ◦ As′(x)− as(x)− s′

t
at(x)] ds

+
1

s′t

∫ t

0

[as ◦ As′(x)− aqs′(x+ ωs+ p)− as(x) + q] ds

+
1

s′t

∫ t

0

as′(x+ ωs) ds.

We can easily bound the absolute values of the first two terms. For the

first one, by noticing that
∫ t
0
(as+s′ − as)ds =

∫ t+s′
t

asds −
∫ s′
0
asds =∫ s′

0
(as+t − as)ds, we get∫ t

0

[as ◦ As′(x)− as(x)− s′

t
at(x)] ds =

∫ s′

0

[as ◦ At(x)− as(x)− at(x)] ds,

whose absolute value is bounded from above by s′ times

Ms′(x) = max
0≤s≤s′

|as ◦ At(x)− at(x)− as(x)|

≤2 max
0≤s≤s′,(x′,y)∈Td+1

|φ̃s2(x′, y)− y|.

The second term is bounded by∫ t

0

|as ◦ As′(x)− aqs′(x+ ωs+ p)− as(x) + q| ds

≤
∫ t

0

|as ◦ As′(x)− aqs′(x+ ωs+ p)| ds+

∫ t

0

|as(x)− q| ds < 4πt.

So, ∣∣∣∣at(x)

t
− 1

t

∫ t

0

as′(x+ ωs)

s′
ds

∣∣∣∣ ≤ Ms′(x)

t
+

4π

s′
.

Taking the limit t → +∞, the first term on the right hand side ap-
proaches zero. Using Birkhoff’s ergodic theorem, since the base flow
x 7→ x + ωt mod Z is uniquely ergodic with respect to the Lebesgue
measure dm, we obtain

−4π

s′
+

∫
Td

as′

s′
dm ≤ lim inf

t→+∞

at(x)

t
≤ lim sup

t→+∞

at(x)

t
≤ 4π

s′
+

∫
Td

as′

s′
dm.

Finally, taking s′ → +∞, this shows that the rotation number rot f(x)
exists and that rot f(x) =

∫
Td rot f dm does not depend on x. �

We will use the following properties of the rotation number.

Lemma 2.3. Let f, h ∈ C0(Td × T1,R). Then, we have
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• |Ef − rot f | ≤ ‖f − Ef‖C0.
• rot(τH∗f) = τ rot f ,

for any τ ∈ R and a skew-product diffeomorphism H(x, y) = (x, y +
h(x, y)).

Proof. Let θ = rot f . As limt→+∞
1
t

∫ t
0
[f ◦ φs(x, y) − θ] ds = 0, we

immediately have
|Ef − θ| ≤ max |Ef − f |.

This proves the first part of the claim.
If we denote by φ′t the flow of τH∗f , by identity (2.4), we have

rot f = lim
t→+∞

π2H ◦ φ̃′t/τ ◦H−1(0)

t

= τ−1 lim
t→+∞

φ̃
′t/τ
2 ◦H−1(0) + h ◦ φ̃′t/τ2 ◦H−1(0)

t/τ

= τ−1 rot(τH∗f).

This completes the proof. �

2.4. Arithmetics.

Lemma 2.4. If τ,κ > 0, there is κ > 0 such that for any C > 0 the
Lebesgue measure of the complement of DCω(C, τ,κ) is bounded from
above by κC. Furthermore, DCω(τ,κ) is of full Lebesgue measure.

Proof. Let Iν,k be the interval of θ satisfying

|ω · ν + kθ| ≤ C

|ν|d+τ |k|κ
,

for some ν ∈ Zd \ {0} and k ∈ Z \ {0}. Clearly, Iν,k has width
2C(|ν|d+τ |k|1+κ)−1 and is centered at k−1ω · ν.

Recall that ‖ν‖ = maxi |νi|. Clearly, ‖ν‖ ≤ |ν|. Moreover, for each
n ∈ N, one has the following estimate on the cardinality

#{ν ∈ Zd : ‖ν‖ = n} ≤ c1n
d−1

for some c1 > 0, depending on d only. So,∑
ν 6=0

|ν|−(d+τ) ≤
∑
ν 6=0

‖ν‖−(d+τ) ≤ c1
∑
n≥1

n−(τ+1)

which converges if τ > 0. In addition, for κ > 0,∑
k 6=0

|k|−(1+κ) <∞.

Therefore, the Lebesgue measure of
⋃
ν,k Iν,k is bounded by κC for some

constant κ > 0, depending on d, τ and κ.
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The measure of the above set approaches zero when C → 0. The
second claim is now immediate. �

3. Renormalization

In this section, we construct the renormalization scheme. We first de-
fine the non-resonant and resonant modes of a vector field and construct
a change of coordinates that, via the pullback, eliminates non-resonant
modes of a vector field. We then perform a scaling of the phase space
that can produce some non-resonant modes of the transformed vector
field. These two transformations, together with a time rescaling, form
a one-step renormalization operator. Finally, we construct the stable
manifold for a sequence of renormalizations operators.

3.1. Resonant cones. As explained in the introduction, we will per-
form a transformation of our coordinate system such that ω ∈ Rd takes
the form ω = (1, 0, . . . , 0). In this coordinate system, the lattice V0 will
be a lattice in Rd which does not coincide with Zd.

At each renormalization step, we will perform the following phase
space scaling T (x, y) = (Tx, y), where

Tx = η−1x‖ + βx⊥, (3.1)

and x = x‖ + x⊥ is the decomposition of x into component x‖ parallel
and x⊥ perpendicular to ω. Notice that we will not scale the coordinate
y, and all the functions that we consider will be periodic in y with
period 2π; the lattice dual to 2πZ, the lattice N = Z, will be fixed
throughout the paper.

Under the scaling, the lattice V is transforms into TV .

Definition 3.1. Given σ,K > 0 and a pair of lattices V and N , in
Rd and R, respectively, the nonresonant index set I

−
is defined as the

set of pairs (v, k) ∈ (V ,N ) such that |ω · v| > σ|v| and |k| ≤ K, or
v = 0 and 0 < |k| ≤ K. The resonant index set I

+
is defined as the

complement of I
−

in V ×N .

Given any L ≥ 1, we can find ` > 0 such that

|v⊥| > L or |v‖| ≥ ` , ∀v ∈ V \ {0} . (3.2)

We assume that the renormalization parameters σ, η, β, L, ` are pos-
itive and that the following conditions are satisfied

σ < 1/2 , 2σL ≤ ` , 0 < η ≤ β < 1. (3.3)

Given K > 0, let

J = {(v, k) ∈ I− : |θk| > (1/2)|ω · v| and |k| ≤ K}. (3.4)
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Let

γ = max
(v,k)∈J

{
2, θ−1,

σ + σ|v|+ |k|
|ω · v + θk|

}
.

Proposition 3.2. For all modes indexed by (v, k) with v 6= 0, |k| ≤ K
and |ω · v| > σ|v|, or v = 0 and 0 < |k| ≤ K, if |ω · v + θk| 6= 0, then
|ω · v + θk| ≥ σ/γ, |ω · v + θk| ≥ (σ/γ)|v|, and |ω · v + θk| ≥ k/γ.

Proof. If |ω ·v| > σ|v| and |θk| ≤ (1/2)|ω ·v|, then we have |ω ·v+θk| ≥
|ω ·v|−|θk| ≥ (1/2)|ω ·v| and thus |ω ·v+θk| ≥ (σ/2)|v|. Furthermore,
|ω · v + θk| ≥ |θk|. Using the conditions (3.2) and (3.3), together with
L ≥ 1, we also obtain |ω · v| > σ and, thus, |ω · v + θk| ≥ σ/2, in that
case.

The number of modes with |θk| > (1/2)|ω · v| ≥ (1/2)σ|v| and |k| ≤
K is finite. So, if |ω ·v+θk| 6= 0 then |ω ·v+θk| ≥ σ/γ and |ω ·v+θk| ≥
(σ/γ)|v|. �

Let I− be the projection operator onto the subspace spanned by
modes (v, k) ∈ I− defined by the truncation

I−f(x, y) =
∑

(v,k)∈I−
fv,ke

ix·v+iyk.

The projection operator onto the subspace spanned by modes (v, k) ∈
I

+
is denoted by I+ , and defined as I+ = I− I− .

3.2. Elimination of non-resonant modes. In this subsection, we
construct a coordinate transformation U = U1 such that U∗f has no
non-resonant modes. We construct this transformation using a homo-
topy method, which is different from the method used in [10, 11, 12,
13, 14, 15]. Let ω ∈ Rd, θ ∈ R, σ > 0, γ > 0, and

ε =
σ2

96γ2(‖(ω, θ)‖+ 2/3)
(3.5)

Theorem 3.3. Let ω ∈ Rd, θ ∈ R, ρ > 0, 0 < r′ < r, σ > 0 and γ > 0.
Assume that 0 < σ

2γ
< r − r′ < 1. If X = (ω, f) with ‖f − θ‖ρ,r ≤ ε,

there is an isotopy Ut : Dρ,r′ → Dρ,r of real-analytic diffeomorphisms
of the form Ut(x, y) = (x, y + ut(x, y)) such that U0 = I is the identity
map, and

I−U∗t f = (1− t)I−f, t ∈ [0, 1],
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satisfying

‖ut‖′ρ,r′ ≤ 4tγσ−1‖I−f‖ρ,r′ ,

‖U∗t f − θ‖ρ,r′ ≤
(

2 +
t

3

)
‖f − θ‖ρ,r,

‖(I− E)U∗t f‖ρ,r′ ≤
(

2 +
t

3

)
‖(I− E)f‖ρ,r

‖EU∗t f − Ef‖ρ,r′ ≤ 8tχγ2σ−2‖(I− E)f‖2ρ,r,

(3.6)

where χ =
(

4t‖(ω, θ)‖+ σ
γ

+ 1
r−r′

σ2

γ2

)
. Moreover, the map f 7→ Ut is

analytic.

Proof. Define the operator F : I−A′ρ,r′ → I−Aρ,r′ as

F(u) = I−U∗f = I−
−ω · ∂xu+ f ◦ U

1 + ∂yu
for ‖u‖′ρ,r′ < 1, (3.7)

where U = I + u. The derivative of this operator is given by

DF(u)h = I−
1

1 + ∂yu

(
−Dω,θh+ ∂yf ◦ U h+

Dω,θu− f ◦ U + θ

1 + ∂yu
∂yh

)
,

where Dω,θ = (ω, θ) · (∂x, ∂y) and the dot denotes the dot product. We
would like to determine a one-parameter family ut, with 0 ≤ t ≤ 1,
satisfying F(ut) = (1− t)F(u0) and u0 = 0.

Firstly, we will show that DF(0) = I−(−Dω,θ + ∂yf − (f − θ)∂y) is
invertible. Since

‖D−1ω,θ I
−
h‖′ρ,r′ =

∑
(v,k)∈I−

(1 + ‖v‖+ |k|) |hv,k|
|ω · v + kθ|

eρ|v|+r
′|k|

≤
∑

(v,k)∈I−
γσ−1 |hv,k|eρ|v|+r

′|k|

≤ γσ−1‖I−h‖ρ,r′ ,

we obtain that D−1ω,θ : I−Aρ,r′ → I−A′ρ,r′ is well-defined with

‖D−1ω,θ‖ ≤ γσ−1.

Since the linear operator f̂ = ∂yf − (f − θ)∂y : A′ρ,r′ → Aρ,r′ is continu-

ous with norm bounded from above by ‖f̂‖ ≤ 1
r−r′‖f−θ‖ρ,r+‖f−θ‖ρ,r′ ,

the norm of DF(0)−1 : I−Aρ,r′ → I−A′ρ,r′ is bounded as

‖DF(0)−1‖ = ‖D−1ω,θ(I− I− f̂D−1ω,θ)
−1‖ ≤

‖D−1ω,θ‖
1− 2‖f̂‖‖D−1ω,θ‖

≤ 2‖D−1ω,θ‖,
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for ‖f̂‖ ≤ (4‖D−1ω,θ‖)−1, that holds if 1
r−r′‖f−θ‖ρ,r+‖f−θ‖ρ,r′ ≤ σ/(4γ).

Secondly, we prove that DF(u) is invertible for sufficiently small u.
Notice that, if ‖u‖ρ,r′ ≤ (r − r′)/2, we have

‖[DF(u)−DF(0)]h‖ρ,r′ =

∥∥∥∥I− 1

1 + ∂yu

[
∂yuDω,θh+ ((∂yf) ◦ U − ∂yf)·

· (1 + ∂yu)h+ (f − θ)∂yu ∂yh− (f ◦ U − f) ∂yh

+
Dω,θu+ (f − θ) ◦ U∂yu

1 + ∂yu
∂yh

]∥∥∥∥
ρ,r′

≤
‖u‖′ρ,r′‖h‖′ρ,r′
1− ‖u‖′ρ,r′

[‖(ω, θ)‖

+

(
1 +

8

(r − r′)2
(1 +

r − r′

4
+ ‖u‖′ρ,r′)

)
·‖f − θ‖ρ,r +

‖(ω, θ)‖+ ‖f − θ‖ρ,r
1− ‖u‖′ρ,r′

]
.

If r− r′ < 1, ‖u‖′ρ,r′ ≤ 1/2 and ∆ = 3‖(ω, θ)‖+ (3 + 14(r− r′)−2)‖f −
θ‖′ρ,r, we obtain

‖DF(u)−DF(0)‖ ≤ 2∆‖u‖′ρ,r′ . (3.8)

Therefore, if

‖u‖′ρ,r′ ≤ min

{
1

2
,
r − r′

2
,

1

4∆‖DF(0)−1‖

}
:= δ, (3.9)

DF(u) is invertible, with

‖DF(u)−1‖ ≤ 1

‖DF(0)−1‖−1 − ‖DF(u)−DF(0)‖
≤ 2‖DF(0)−1‖.

Finally, by first differentiating F(ut) = (1− t)F(u0) with respect to
t and then integrating, we obtain

ut = −
∫ t

0

DF(us)
−1F(0) ds,

whenever the family members us satisfy the same smallness condition
(3.9) as u above so that the derivative of F is invertible. Furthermore,
ut ∈ I−A′ρ,r′ is real-analytic for each t and satisfies

‖ut‖′ρ,r′ ≤ t sup
‖u‖′

ρ,r′≤δ
‖DF(u)−1‖ ‖I−f‖ρ,r′

≤ 2t‖DF(0)−1‖ ‖I−f‖ρ,r′ ≤ tδ,
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if ‖I−f‖ρ,r′ ≤ δ(2‖DF(0)−1‖)−1. The map f 7→ ut is analytic.
Since

U∗t f − θ =−Dω,θut + (f − θ) ◦ Ut
+
∑
n≥1

(−∂yut)n(−Dω,θut + (f − θ) ◦ Ut), (3.10)

and ut ∈ I−A′ρ,r′ , by taking the I+ projection of (3.10),

I+U∗t f−θ = I+
[

(f − θ) ◦ Ut +
∑
n≥1

(−∂yut)n(−Dω,θut + (f − θ) ◦ Ut)

]
,

(3.11)
and assuming ‖f − θ‖ρ,r ≤ σ/(8γ), we obtain

‖I+(U∗t f − θ)‖ρ,r′ ≤ ‖f − θ‖ρ,r +
‖ut‖′ρ,r′

1− ‖ut‖′ρ,r′
(
‖ut‖′ρ,r′‖(ω, θ)‖+ ‖f − θ‖ρ,r

)
≤ ‖f − θ‖ρ,r + 4t‖I−f‖ρ,r′

(
1

12
+ ‖DF(0)−1‖‖f − θ‖ρ,r

)
≤ ‖f − θ‖ρ,r +

4

3
t‖I−f‖ρ,r′ .

Since, by construction,

I−U∗t f = (1− t)I−f, (3.12)

we also have ‖I−U∗t f‖ρ,r′ = (1− t)‖I−f‖ρ,r′ , and

‖U∗t f − θ‖ρ,r′ ≤ ‖f − θ‖ρ,r +

(
1 +

t

3

)
‖I−f‖ρ,r′ .

The second inequality in (3.6) follows.
By taking the I − E projection of the identities (3.13) and (3.12),

adding them up and using the fact that (I−E)(f ◦Ut) = (I−E)((f −
Ef) ◦ Ut), we similarly obtain the third inequality in (3.6).

By taking the E projection of identity (3.13), we obtain

EU∗t f−Ef = E((I−E)f)◦Ut+
∑
n≥1

(−∂yut)n(−Dω,θut+((I−E)f)◦Ut).

(3.13)
Taking into account that

‖E((I− E)f) ◦ Ut‖ρ,r′ ≤ ‖∂y((I− E)f)‖
ρ, r+r

′
2
‖u‖ρ,r′

≤ 2

r − r′
‖(I− E)f‖ρ,r‖u‖ρ,r′ ,

(3.14)

we obtain the fourth inequality in (3.6). �
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3.3. Phase space and time rescaling. Consider the linear coordi-
nate transformation T : (x, y) 7→ (Tx, y) rescaling the base torus, where
T ∈ SL(d,R) is a matrix associated to ω, defined as in (3.1). In addi-
tion, we will perform a linear time rescaling t 7→ η−1t.

Since ω = η−1 T−1ω, the joint action of T and time rescaling on
X = (ω, f) is given by

η−1 T ∗X = (ω, η−1 f ◦ T ).

We are interested in the action of this transformation on vector fields
with no non-resonant modes, since the non-resonant modes are elimi-
nated by a coordinate change constructed in Theorem 3.3.

Lemma 3.4. If 0 < ρ′′ ≤ ηρ′ and 0 < η, β < 1, 0 < r′′ ≤ r′ − σ/2,
σ > 0, then T ∗ defines a bounded linear operator from I+Aρ′,r′(V) to
Aρ′′,r′′(TV), with the property that

‖T ∗I+IK(I− E)f‖ρ′′,r′′ ≤ e−ρ
′(1−ηβ)L‖I+IK(I− E)f‖ρ′,r′ .

‖T ∗(I− IK)f‖ρ′′,r′′ ≤ e−
1
2
σK‖(I− IK)f‖ρ′,r′ .

‖T ∗Ef‖ρ′′,r′′ ≤ ‖Ef‖ρ′,r′ ,

Proof. Due to our choice of the norm, it suffices to verify the given
bounds for a single mode f̂v,k(x, y) = fv,ke

ix·v+iyk labeled by (v, k).
From the definitions of the scaling map it follows that

‖T ∗f̂v,k‖ρ′′,r′′ ≤ eA‖f̂v,k‖ρ′,r′ ,
where A ≤ ρ′′|Tv‖|+ ρ′′|Tv⊥| − ρ′|v‖| − ρ′|v⊥| − (r′ − r′′)|k| .

In order to prove the first bound, assume that (v, k) belongs to I
+

and |k| ≤ K. Thus, |v‖| ≤ σ|v|, with v 6= 0. Since |v| = |v‖| + |v⊥|,
Tv‖ = η−1v‖ and Tv⊥ = βv⊥, we find that A ≤ −ρ′(1−ηβ)|v⊥|. Notice
now that, in this case, |v‖| < 2σ|v⊥|, by using that σ < 1/2, which does
not allow frequencies v that satisfy |v‖| ≤ L and |v⊥| ≥ `, due to the
condition (3.3). Thus, we must have |v‖| > L, by condition (3.2).

The second bound follows directly from our initial estimate on A by
using that |Tv| ≤ |η−1v| and |k| > K. Setting v = 0 and k = 0 leads
the third bound. �

3.4. Renormalization transformations. Following [12, 13, 15], we
express the Brjuno condition on ω (and, thus, on V) in terms of the
summability of the series of numbers

an =
∞∑
k=n

2n−k
[
2−k−κ ln(1/Ω′k+κ) + (k + κ′)−2

]
, Ω′n = min

0<|ν⊥|<2n
|ν‖| ,

(3.15)
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for all positive integers n. Here κ and κ′ are two integer constants that
will be specified later on.

It follows from the definition that an+1/2 < an < 2an+1, for all n ∈ N
and, thus, an+12

n+1/4 < an2n < an+12
n+1. In particular, an2n is an

increasing sequence.
We will define the scaling parameters as in [13],

ηn =

(
An+1

An

) d−1
d

, βn =

(
An+1

An

) 1
d

, where An =
∞∑
k=n

ak , (3.16)

for all positive integers n. Since {an}n∈N is a summable sequence of
positive numbers, the sequence {An}n∈N is well-defined, decreasing and
converging to zero. We define, recursively, λn = ηnλn−1, with λ0 = 1.
These definitions imply the last bound in (3.3), since ηn < βn < 1 for
d > 1.

These parameters are used to define the scaling maps Tn and Pn =
Tn · · ·T1, at the n-th renormalization step, for each n ∈ N, as

Tn(x) = η−1n x‖ + βnx⊥ , Pn(x) = λ−1n x‖ +
( n∏
i=1

βi
)
x⊥ . (3.17)

We also define T0 = P0 as the identity maps. Notice that the deter-
minants |Tn| = |Pn| = 1, for all n ∈ N, by the choice of the scaling
parameters.

Given a lattice V0 = V ⊂ Rd, we define the lattice Vn−1 = Pn−1V0 ,
defining the frequency space of the functions that are going to be renor-
malized in the n-th step. The parameters L and ` used in the n-th
renormalization step are

Ln−1 = 2n+κ
n−1∏
i=1

βi , `n−1 = λ−1n−1e
−an2n+κ . (3.18)

Proposition 3.5. If v ∈ Vn−1 is nonzero, then either |v‖| ≥ `n−1 or
|v⊥| > Ln−1 .

Proof. Assume that v ∈ Vn−1 satisfies 0 < |v⊥| ≤ Ln−1. Then the corre-
sponding lattice point ν = P−1n−1v in V0 satisfies |ν⊥| ≤ (

∏n−1
i=1 βi)

−1Ln−1 =

2n+κ and, thus, |ν‖| ≥ Ω′n+κ by (3.15). Since we have Ω′n+κ > e−an2
n+κ

,
this yields

|v‖| = λ−1n−1|ν‖| ≥ λ−1n−1Ω
′
n+κ > λ−1n−1e

−an2n+κ = `n−1 , (3.19)

as claimed. �
Let Cθ be a constant dependent of θ, that will be specified later on.
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Definition 3.6. We define the resonant cone width parameter at the
n-th renormalization step

σn = (2κ′C−1θ λn−1Ln−1)
−1e−an2

n+κ

=
CθA1

2κ′An
2−(n+κ)e−an2

n+κ

. (3.20)

This definition immediately implies σn > 0 and 2σnLn−1 ≤ `n−1, for
κ′ > Cθ and all n ∈ N.

Definition 3.7. Given the initial domain parameters %, r > 0, we
define the n-th step cut-off parameter

Kn−1 =
2%

A1σn
an2n+κ. (3.21)

The following proposition completes the verification of all bounds
in (3.3).

Proposition 3.8. For any fixed κ′ and κ sufficiently large (depending
on κ′), we have

∑∞
n=1 σn < 1/2.

Proof. Notice that

σn <
CθA1

2κ′an
2−(n+κ)e−an2

n+κ

.

Since {an2n}n∈N is a growing sequence, the sequence {σn}n∈N is de-
creasing. Notice also that for a fixed κ′, and sufficiently large κ, we
have 2n+κan ≥ 2n+κ(n + κ′)−2 ≥ c′2κn, for some constant c′ > 0 de-
pending only on κ′. This makes the sum

∑∞
n=1 σn finite and, since

by choosing κ sufficiently large, A1 decreases, we can make this sum
smaller than 1/2. �

Definition 3.9. The initial domain parameters are ρ0 = % > 0 and
r0 = r > 0. The n-th step domain parameters are

ρn−1 = λn−1%, rn−1 = r

[
1−

n−1∑
i=1

(
σi
γi

+
σi
2

)]
. (3.22)

Remark 3.10. It follows from Proposition 3.8 and the fact that γi ≥ 2
that rn > r/2.

Definition 3.11. Let θn−1 = λ−1n−1θ, for n ∈ N. Let also

J
−

n−1 = {(v, k) ∈ I−(Vn−1) : |θn−1k| > (1/2)|ω · v| and k ≤ Kn−1},
and

γn = max
(v,k)∈J−n−1

{
2, θ−1n−1,

σn + σn|v|+ k

|ω · v + θn−1k|

}
.
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Definition 3.12. We say that θ is DCω(V) if there exist constants
τ,κ > 0 and C > 0 such that

|ω · v + θk| > C
|v|d+τ |k|κ

, (3.23)

for all v ∈ V\{0} and all k ∈ N .

In the following, for any θ ∈ DCω(V), τ,κ, C are the associated
constants as in Definition 3.12.

Proposition 3.13. If θ is a positive number such that θ ∈ DCω(V),
then there exists a universal constant ξ > 0, such that for all n ∈ N,

γn < ξCθ(λn−1σn)−(d+τ)(
n−1∏
i=1

βi)
−(d+τ)Kd+τ+κ+1

n−1 , (3.24)

where Cθ = max{θ−1, C−1(θ + 1)θd+τ}.

Proof. Recall that ν = P−1n−1v. By definition, we have

γn = max
(v,k)∈J−n−1

{
2, θ−1n−1,

σn + σn|v|+ |k|
|ω · v + θn−1k|

}
< max

(v,k)∈J−n−1

{
2, θ−1n−1,

2|ω · v|+ |k|
|ω · v + θn−1k|

}
< max

(v,k)∈J−n−1

{
2, θ−1n−1,

(θn−1 + 1)|k|
|ω · v + θn−1k|

}
(3.25)

< max
(v,k)∈J−n−1

{
2, λn−1θ

−1,
(λ−1n−1θ + 1)|k|
λ−1n−1|ω · ν + θκ|

}
.

Now, using the fact that θ ∈ DCω(V), we find

1

|ω · ν + θk|
≤ C−1|ν|d+τ |k|κ ≤ C−1(

n−1∏
i=1

βi)
−(d+τ)|v|d+τ |k|κ, (3.26)

by using that

|v| = |v‖|+ |v⊥| = λ−1n−1|ν‖|+ (
n−1∏
i=1

βi)|ν⊥| ≥ (
n−1∏
i=1

βi)|ν|. (3.27)

For (v, k) ∈ J
−
n−1 and v 6= 0, we have σn|v| < |ω · v| < 2θn−1|k| ≤

2θn−1Kn−1 and, thus, |v| < 2θ(λn−1σn)−1Kn−1.
Therefore, we obtain that

γn < ξCθ(λn−1σn)−(d+τ)(
n−1∏
i=1

βi)
−(d+τ)Kd+τ+κ+1

n−1 , (3.28)
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where ξ is a universal constant, and Cθ = max{θ−1, C−1(θ+1)θd+τ}. �

Definition 3.14. For n ∈ N, let

µn = exp
{
−%λn−1(1− βnηn)Ln−1

}
= exp

{
− %

A1

an2n+κ}. (3.29)

Proposition 3.15. µn+1 < µn < µ
1/4
n+1, for n ∈ N. Furthermore, given

C,N > 0, if κ′ and then κ are chosen sufficiently large, then for all
n ≥ 1,

µn ≤ Ce−N2n+κan , µn ≤ C2−Nn , µn ≤ C

(
An
A1

)N
. (3.30)

Proof. Let C > 0 and N > 0 be arbitrary. Since an+1/2 < an < 2an+1,
for all n ∈ N, we have an+12

n+1/4 < an2n < an+12
n+1, and thus µn+1 <

µn < µ
1/4
n+1. By choosing κ′ and κ sufficiently large, we have 1/A1 ≥ N .

Increasing them further, if needed, we obtain the first bound. Keeping
κ′ fixed, and increasing κ further, if necessary, we obtain the second
two bounds in (3.30) by using that 2n+κan ≥ 2n+κ(n+κ′)−2 ≥ c′2κn, for
some positive constant c′ depending only on κ′. The same inequality,
together with An/A1 > an/A1 > C1/Ne−%2

n+κan/(NA1), where the last
inequality is valid for sufficiently large κ, implies the third bound in
(3.30). �

Proposition 3.15 directly implies the following claim.

Corollary 3.16. Given any C,N > 0, if κ′ and κ are chosen suffi-
ciently large, then for all n ≥ 1,

µn ≤ CσNn , µn ≤ CK−Nn−1 , µn ≤ CηNn ,

µn ≤ CλNn ≤ CηNn ≤ CβNn , µn ≤ Cγ−Nn .
(3.31)

Proof. In the first and the last inequality we have also used that µn ≤
Cκ′−N for any given C,N > 0, if κ is chosen sufficiently large. �

From Theorem 3.3, it follows that there exists a universal constant
R > 0 such that the n-th step renormalization operator Rn is well-
defined from an open ball Bn−1 ⊂ Aρn−1,rn−1(Vn−1) around θn−1, of
radius Rσ2

n/(γ
2
nθn−1), into Aρn,rn(Vn). We may choose the domain of

the first step renormalization operator to be any ball D0 ⊂ Rσ2
1/(γ

2
1θ).

Notice that the restriction of Rn to EAρn−1,rn−1(Vn−1) is a linear opera-
tor from EAρn−1,rn−1(Vn−1) to EAρn,rn(Vn) that will be denoted by Ln.

The following claim follows directly from Theorem 3.3 and Lemma 3.4.

Theorem 3.17. There exists C,R > 0 such that the n-th step renor-
malization operator Rn is a bounded analytic map from Bn−1 into
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Aρn,rn(Vn), that satisfies ‖L−1n ‖ ≤ 1 and

‖(I− E)Rn(fn−1)‖ρn,rn ≤ Cη−1n µn‖(I− E)fn−1‖ρn−1,rn−1 ,

‖ERn(fn−1)−Rn(Efn−1)‖ρn,rn ≤ Cλ−1n γ2nσ
−2
n ‖(I− E)fn−1‖2ρn−1,rn−1

.

In what follows, a domain Dn−1 for Rn is a subset of Bn−1 described
above, which is open in Aρn−1,rn−1(Vn−1) and contains θn−1. Given a

domain Dn−1, for each Rn, the domain D̃n−1 of

R̃n = Rn ◦ · · · ◦R1,

for n ∈ N, is defined recursively as the subset of all functions in the

domain of R̃n−1 that are mapped by R̃n−1 into the domain Dn−1 of
Rn. By Theorem 3.17, these domains are open, non-empty, and the

transformations R̃n are analytic.
To prove the following theorem, we apply the stable manifold theo-

rem for sequences of mappings between Banach spaces that was proved
in [11] (Section 6 therein).

Theorem 3.18. If κ′ and then κ are chosen sufficiently large, then
there exist a sequence of domains Dn−1 for the transformations Rn

such that the set W = ∩n∈N∪{0}D̃n is the graph of an analytic function
W : (I−E)D0 → ED0 satisfying W (0) = θ and DW (0) = 0. For every
f ∈ W, and every n ∈ N,

‖(I− E)R̃n(f)‖ρn,rn ≤ χ1/2
n ‖(I− E)f‖%,r,

‖ER̃n(f)− θn‖ρn,rn ≤ χn‖(I− E)f‖2%,r,
(3.32)

where χn =
∏n

k=1 µk.

Proof. We start by rescaling the transformations Rn. For every n ∈ N,
let dn = dn−1σ

2
n+1/(γ

2
n+1θn), with d0 > 0 be half of the constant R from

Theorem 3.17. Consider the transformations

Rn(g) = d−1n [Rn(θn−1 + dn−1g)− θn−1], (3.33)

for n ∈ N. By Theorem 3.17, Rn is analytic and bounded on a ball
‖g‖ρn−1,rn−1 < 2, and satisfies

‖(I− E)Rn(g)‖ρn,rn ≤ εn‖(I− E)g‖ρn−1,rn−1 ,

‖ERn(g)−Rn(Eg)‖ρn,rn ≤ ϕn‖(I− E)g‖2ρn−1,rn−1
,

(3.34)

where εn = Cη−1n σ−2n+1γ
2
n+1θnµn, ϕn = Cη−1n σ−2n σ−2n+1γ

2
nγ

2
n+1θnθn−1, and

C > 0. In addition, we have ‖L−1n ‖ < 1/4. We will restrict Rn to the
domain Dn−1 ⊂ Aρn−1,rn−1(Vn−1) defined by

‖Eg‖ρn−1,rn−1 < 1, ‖(I− E)g‖ρn−1,rn−1 < δn−1, (3.35)
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where δn−1 = (6ϕn)−1. By Corollary 3.16, if κ′ and κ are chosen suffi-

ciently large, then Cη−1n σ−2n+1γ
2
n+1θnµ

1/2
n ≤ 1/6 and

Cη−1n+1η
−1
n λ−1n+1σ

−2
n+2σ

−2
n+1σ

2
nγ

2
n+2γ

2
n+1γ

−2
n θµn ≤ 1,

and, therefore, εn ≤ µ
1/2
n /6 and εnδn−1 ≤ δn, for all n ∈ N. The

assumptions of Theorem 6.1 in [11] are now verified with ϑ = 1/4, and
the conclusions of this theorem imply the statements of our claim. �

Let D0 be a domain whose existence is guaranteed by Theorem 3.18.

Theorem 3.19. If rot f = θ, and f ∈ D0, then f ∈ W.

Proof. If rot f = θ, let f = θ + d0g and g0 = g and gn = Rn(gn−1).
Lemma 2.3 guarantees that |Efn− rot fn| ≤ ‖(I−E)fn‖ρn,rn and, thus,
analogously to (3.34), we also have

‖(I− E)Rn(gn−1)‖ρn,rn ≤ εn‖(I− E)gn−1‖ρn−1,rn−1 ,

‖ERn(gn−1)‖ρn,rn ≤ εn‖(I− E)gn−1‖ρn−1,rn−1 ,
(3.36)

as long as gn−1 ∈ Dn−1. Since, εnδn−1 ≤ δn < 1, if g ∈ D0, then
gn ∈ Dn, for all n ∈ N. Here, we have also used that rot fn = λ−1n rot f
(see Lemma 2.3). �

4. Analytic conjugacy

We say that a vector field X = (ω, f) with f ∈ Aρ,r(V) is reducible
to Y = (ω, θ) if there is a continuous embedding ΓX : D0 = Td×T1 →
Dρ,r, such that for all t ∈ R,

φtX ◦ ΓX = ΓX ◦ φtω,θ, (4.1)

where φω,θ is the linear flow of the constant vector field Y = (ω, θ).
We refer to ΓX as the conjugacy between the flows of X and Y or the
reducibility conjugacy for X.

Consider a one-step renormalization operator R and a vector field
X in the domain of R. If F is any map from Td × T1 into the domain
of ΛX = UX ◦ T , define the map

MX(F ) = ΛX ◦ F ◦ T −1 . (4.2)

We will restrict our consideration to maps F of the form F = I + ψ,
where I is the identity and ψ(x, y) = (0, ψ̂(x, y)). Notice, that MX

preserves the form of these maps, since UX is also of the same form.
Formally, if ΓR(X) is a conjugacy between the flows of R(X) and

(ω, η−1θ), then ΓX = MX(ΓR(X)) is a conjugacy between the flows of
X and the vector field (ω, θ). This can be seen easily from the identity

ΛX ◦ φηtR(X) = φtX ◦ ΛX . (4.3)
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Denote by A0(V) the Banach space of continuous functions F :
D0 → Cd+1 , with frequency module in V , for which the norm ‖F‖0,V =∑

v∈V,k∈N ‖Fv,k‖ is finite, where Fv,k are the Fourier coefficients of F .
Consider now a fixed but arbitrary vector field X = X0 that belongs

to the stable manifold W of our renormalization transformations, de-
scribed by Theorem 3.18. Let Xn = Rn(Xn−1), for n ≥ 1. In order to
simplify the notation, we will write Uk in place of the map UXk associ-
ated to the vector field Xk and Mk+1 in place of MXk . Our goal is to
construct an appropriate sequence of functions Γk ∈ A0(Vk), satisfying

Γn−1 =Mn(Γn) = Λn ◦ Γn ◦ T −1n , Λn = Un−1 ◦ Tn , (4.4)

for all n ∈ N. Then, we will show that Γ0 is the reducibility conjugacy
for X0.

Let us define Bn, for every n ≥ 0, to be the vector space A0(Vn),
equipped with the norm

‖ψ‖′n = s−1n ‖ψ‖0,Vn = s−1n
∑

v∈Vn,k∈N

‖ψv,k‖ , sn =
r

2 · 4n
λn . (4.5)

Denote by Bn the unit ball in I +Bn , centered at the identity function
I, and by Bn/2 the ball of radius 1/2 in the same space.

Proposition 4.1. If κ′ and then κ are chosen sufficiently large, then
there exists an open neighborhood B of θ in A%,r(V0) such that, for every
X = (ω, f) with f ∈ W ∩B, and for every n ∈ N, the map Mn is well
defined and analytic, as a function from Bn to Bn−1 . Furthermore,
Mn takes values in Bn−1/2, and ‖DMn(F )‖ ≤ 1/3 , for all F ∈ Bn .

Proof. Clearly, Mn is well-defined in some open neighborhood of I in
Bn , and

Mn(F ) = I + g + (Un−1 − I) ◦ (I + g) , g = Tn ◦ ψ ◦ T −1n , (4.6)

where ψ = F − I. In order to estimate the norm of Un−1 − I, we can
apply Theorem 3.3, with ρ = ρn−1 and r′ = r′n−1, where rn ≤ r′n−1 <
rn−1 . By Theorem 3.18,

‖Un−1 − I‖ρn−1,r′n−1
≤ 4

γn
σn
‖I−fn−1‖ρn−1,r′n−1

≤ 4
γn
σn
χ
1/2
n−1‖(I− E)f‖ρ,r ≤ χ1/11

n ,
(4.7)

for all n > 1, and for all f ∈ W ∩B. Here, we have also used Proposi-
tion 3.15, and assumed that κ′ and then κ have been chosen sufficiently
large, and that the neighborhood B of θ has been chosen sufficiently
small (depending on κ′ and κ). The first estimate in (4.7) and the final
bound also hold for n = 1.
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The composition with I + g in Equation (4.6) can be controlled by
Lemma 2.1, using the fact that ‖g‖0,Vn−1 ≤ η−1n sn‖ψ‖′n ≤ r′n−1/2, since
‖ψ‖′n ≤ 1, as we assume that F ∈ Bn. Using sn/sn−1 = ηn/4 , we
obtain ‖g‖′n−1 ≤ η−1n ηn/4 ≤ 1/4 . From (4.7) we obtain ‖Un−1−I‖′n−1 ≤
s−1n−1χ

1/11
n ≤ 1/4, if κ′ and κ have been chosen sufficiently large. These

estimates show that Mn−1 maps Bn into Bn−1/2.
Now, we obtain a bound on the norm of the derivative map

DMn(F )ψ̄ = ḡ +D(Un−1 − I) ◦ (I + g)ḡ, (4.8)

where ḡ = Tn ◦ ψ̄ ◦ T −1n . Since ‖g‖0,Vn−1 ≤ ρn−1/2, using the Cauchy
estimate on the derivative, we find

‖D(Un−1 − I)‖ρn−1,
rn−1

2
≤ 2

rn−1
‖Un−1 − I‖ρn−1,rn−1 . (4.9)

Since rn−1 > r/2, we obtain a bound on the norm of this derivative
analogous to that of (4.7). This, together with the fact that the in-
clusion map from Bn into Bn−1 is bounded in norm by ηn/4, shows
that

‖DMn(F )ψ̄‖′n−1 ≤
sn
sn−1

η−1n

(
1 + ‖D(Un−1 − I)‖ρn−1,

rn−1
2

)
‖ψ̄‖′n,

(4.10)
and, consequently, ‖DMn(F )‖ ≤ 1/3 , for all n ∈ N, and F ∈ Bn . �

Below, we will make use of the following estimate on the difference
between the flow for X = (ω, f) and the flow for the constant vector
field Y = (ω, θ).

Proposition 4.2. Let τ > 0 and let X = (ω, f) be a vector field with
f ∈ A%,r(V), such that τ‖f − θ‖%,r < r′ < r. Then, for all t in the
interval [−τ, τ ],

‖φtX − φtω,θ‖%,r−r′ ≤ ‖t(f − θ)‖%,r . (4.11)

Let φn be the flow for the vector field Xn. We start with the identity

φtn−1 ◦Mn(F ) ◦ φ−tω,θn−1
=Mn

(
φηntn ◦ F ◦ φ

−ηnt
ω,η−1

n θn−1

)
, (4.12)

which follows from the relation (4.3) between the flow of a vector field
and the flow of the renormalized vector field.

Proposition 4.3. Under the same assumptions as in Proposition 4.1,
there exists an open neighborhood B of θ in A%,r(V0), such that for
every X = (ω, f) with f ∈ W ∩ B, and for every n ≥ 1, the function

φsn ◦ F ◦ φ−sω,θn belongs to Bn, whenever F ∈ Bn/2 and |s| ≤ χ
−1/6
n .
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Proof. We will use the following easily verifiable identity

φsn ◦F ◦φ−sω,θn = I +ψ ◦φ−sω,θn +
[
φsn ◦φ−sω,θn − I

]
◦
(
I +ψ ◦φ−sω,θn

)
. (4.13)

Since, by assumption, ‖ψ‖′n ≤ 1/2, and ‖ψ ◦ φ−sω,θn‖0,Vn = ‖ψ‖0,Vn , we

have ‖ψ ◦ φ−sω,θn‖0,Vn ≤ sn/2.
By Proposition 4.2 and Theorem 3.18, we have the bound∥∥φsn ◦ φ−sω,θn − I∥∥ρn,rn−sn/2 ≤ ‖s(fn − θn)‖ρn,rn ≤ 2χ1/3

n ‖(I− E)f‖%,r,
(4.14)

provided that the right hand side of this inequality is less than sn/2.
This is certainly the case if ‖f − θ‖%,r is chosen sufficiently small. The
composition in (4.13) is well-defined since sn < rn.

The third term on the right hand side of (4.13) can be bounded as

‖
[
φsn ◦ φ−sω,θn − I

]
◦
(
I + ψ ◦ φ−sω,θn

)
‖′n−1 ≤

ηn
2
χ1/3
n ‖(I− E)f‖%,r , (4.15)

which is smaller than 1/2, for any n ≥ 1, if f is sufficiently close to θ.
The claim follows. �

We will now construct the conjugacy.

Theorem 4.4. Under the same assumptions as in Proposition 4.1,
there exists an open neighborhood B of θ in A%,r(V), such that the
following holds. Given any X = (ω, f) with f ∈ W ∩ B, and any
sequence of functions Fk ∈ Bk , define

Γn,k =
(
Mn+1 ◦ . . . ◦Mk

)
(Fk) , 0 ≤ n < k . (4.16)

Then, the limits Γn = limk→∞ Γn,k exist in Bn , are independent of the
choice of F0, F1, . . ., and satisfy the identities (4.4). Furthermore, Γ0

is the conjugacy between X and (ω, θ), and the map f 7→ Γ0 is analytic
and bounded on W ∩B.

Proof. By Proposition 4.1, the map Mn : Bn → Bn−1/2 contracts
distances by a factor of at least 1/2. Thus, if 1 ≤ n < k < k′, then
the difference Γn,k′ − Γn,k is bounded in norm by 2n−k+1. This shows
that the sequence k 7→ Γn,k converges in Bn to a limit Γn, which is
independent of the choice of the functions Fk . By choosing Fk = Γk
for all k, we obtain the identities (4.4). The analyticity of f 7→ Γ0

follows, via the chain rule, from the analyticity of the maps used in our
construction, and from uniform convergence.

In order to prove that Γ0 conjugates the flow of X to the linear flow of
(ω, θ), we will use the identity (4.12). To be more precise, given a real
number t, with |t| < 1, define tn = λnt for all n ≥ 0. Proposition 4.3
allows us to iterate the identity (4.12), and get the identity

φt0 ◦ Γ0,k ◦ φ−tω,θ =
(
M1 ◦ . . . ◦Mk

)(
φtkk ◦ φ

−tk
ω,θk

)
, (4.17)
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for all k > 0. As proved above, the right (and thus left) hand side
of this equation converges in A0(V) to Γ0 . In addition, Γ0,k → Γ0 in
A0(V), and the convergence is pointwise as well. Thus, since the flow
φt0 is continuous, we have φt0◦Γ0◦φ−tω,θ = Γ0 . This identity now extends
to arbitrary t ∈ R, due to the group property of the flow, and the fact
that composition with φsω,θ is an isometry on A0(V). �

In what follows, the reducibility conjugacy Γ0 for the vector field
X = (ω, f) with f ∈ W will be denoted by ΓX . For convenience, we
extend the map f 7→ ΓX to an open neighborhood of θ, by setting
ΓX = ΓX′ , where X ′ = (ω, f ′) with f ′ = (I +W )((I− E)f).

Theorem 4.5. Let ρ > %+δ, ρ > r+δ and δ > 0. Under the same as-
sumptions as in Proposition 4.1, there exists an open neighborhood B of
θ in Aρ(V0), such that ΓX has an analytic continuation to ‖ Imx‖ < δ
and | Im y| < δ, for each X = (ω, f) with f ∈ B. With this contin-
uation, the map f 7→ ΓX defines a bounded analytic map from B to
Aδ(V0).

Proof. The proof of this theorem is analogous to the proof of Theorem
4.5 of [11]. Consider the translations Rq,p(x, y) = (x+q, y+p), with q ∈
Rd and p ∈ R. As before, for vector fields X = (ω, f), R∗q,pX denotes
the pullback under Rq,p; the corresponding action on f is denoted by
R∗q,pX. For functions F : D0 → Dρ′ , with ρ′ > 0, we define R∗q,pF =

R−1q,p ◦ F ◦ Rq,p. The renormalization operator R and the maps MX ,
defined in (4.2), satisfy

R ◦R∗q,p = R∗T−1q,p ◦ R, MR∗q,pX = R∗q,p ◦MX ◦ (R∗T−1q,p)
−1. (4.18)

Here, we have used the fact that the translations R∗u are isometries on
the spaces Ar(V) and that the domain of R is translation invariant.
This also implies that the manifold W is invariant under translations
R∗q,p, which is used in the second identity in (4.18).

As was explained above, we can extend the function f 7→ ΓX to
vector fields of the form X = (ω, f) with f in an open neighborhood
of θ, via ΓX = ΓX′ , where X ′ = (ω, f ′) and f ′ = (I +W )((I− E)f). If
restricted to a sufficiently small open ball B ⊂ A%,r(V0), centered at θ,
the map f 7→ ΓX is analytic and bounded on the whole B.

The construction of Γ0 in the proof of Theorem 4.4, together with
identities (4.18) and the invariance property W = W ◦R∗q,p, shows that

ΓR∗q,pX = R∗q,pΓX , for all X = (ω, f) with f ∈ B. Thus, if q ∈ Rd and
p ∈ R, then

ΓX(q, p) =
(
Rq,p ◦ ΓR∗q,pX

)
(0, 0), (4.19)

for f ∈ B. The idea now is to use the analyticity of map f 7→ ΓX , to
extend the right hand side of (4.19) to the complex domain ‖ Im q‖ < δ
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and | Im p| < δ. Choose an open neighborhood B′ of θ in Aρ(V0) such
that R∗q,pB

′ ⊂ B for all (q, p) ∈ Cd+1 of norm δ′ = ρ− % or less. Then,
the right hand side of (4.19), regarded as a function of (f, q, p), is
analytic and bounded on the product of B′ with the strips ‖ Im q‖ < δ′

and | Im p| < δ′. Denoting this function byG, we haveG(f, ·) ∈ Aδ(V0),
for all f ∈ B′. The analyticity of f 7→ G(f, ·) is obtained now by using,
for instance, a contour integral formula for (g(t)−g(0)−tg′(0))/t2 with

g(t) = G(f + tf̃ , ·). �
Theorem 3.18 and Theorem 4.5 imply Theorem 1.1.
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