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Abstract. We consider piecewise expanding maps of the interval
with finitely many branches of monotonicity and show that they
are generically combinatorially stable, i.e., the number of ergodic
attractors and their corresponding mixing periods do not change
under small perturbations of the map. Our methods provide a
topological description of the attractor and, in particular, give an
elementary proof of the density of periodic orbits.

1. Introduction

In this paper we study the dynamics of piecewise expanding maps of
the interval. We fix m ∈ N. A map f : [0, 1]→ [0, 1] is called piecewise
expanding on m intervals if there exist a constant σ > 1 and intervals
I1, . . . , Im such that

(1) [0, 1] =
⋃m
i=1 Ii and int(Ii) ∩ int(Ij) = ∅ for i 6= j,

(2) f is C1 and |f ′| ≥ σ on each Ii,
(3) f ′ is Lipschitz on each Ii

1.

The dynamics of this class of maps has been widely studied as it finds
applications in other areas of mathematics and in many other branches
of science [3]. The theory of piecewise expanding maps is by now
rather satisfactory from a probabilistic point of view. Computer sim-
ulations show that typical orbits of piecewise expanding maps display
chaotic behaviour as they approach an attractor. A way to describe
the chaotic behaviour on the attractor is through the study of invari-
ant measures [13, 12]. It is well-known that piecewise expanding maps
admit absolutely continuous (with respect to Lebesgue measure) in-
variant probability measures, known as acip’s [10]. They are physically
meaningful since it allows us to understand the statistical behaviour of
positive Lebesgue measure sets of orbits.

Deterministic and random perturbations of piecewise expanding maps
have been considered by many people, e.g., [8, 11, 1, 2, 9, 6, 4]. A key
concept is stability. Roughly speaking, a map is called stable if its
statistical properties are robust under small perturbations of the map.
In the context of piecewise expanding maps, a map f with an acip µ
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1This implies that f ′|int(Ii) has a continuous extension to the closure of Ii.
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is acip-stable if given any small perturbation fε of f we have that µε
converges to µ in the weak*-sense as ε→ 0 where µε is an acip of fε [4].

In this paper we are interested in determining which piecewise ex-
panding maps have robust combinatorics at the level of the attractor.
To be more precise, we say that a piecewise expanding map f is com-
binatorially stable if the number of ergodic acip’s of f and the corre-
sponding mixing periods do not change in a neighbourhood of f . By
mixing period we mean the number of mixing components of an ergodic
acip (see (2.1)).

The following theorem is the main result of this paper.

Theorem 1.1. Generic piecewise expanding maps on m intervals are
combinatorially stable and the supports of their acips vary continuously
with the map.

The sufficient conditions on the maps for the main theorem to hold
are given in Definition 3.6. They are generic by Proposition 3.9. In
Section 4 we give a proof and a precise formulation of Theorem 1.1 (see
Theorem 4.1).

In addition, we prove several results for piecewise expanding maps
used in the proof of Theorem 1.1. These results may be of independent
interest. For example, in Section 3, using rather elementary methods,
we prove that periodic points of piecewise expanding maps are dense in
the support of their acips. The density of periodic points for piecewise
expanding maps may not be surprising for experts. However, we could
not find any reference in the literature.

The strategy for proving Theorem 1.1 is the following. To any generic
piecewise expanding map f and ergodic acip µ of f we associate a
trapping region Uµ(g) for small perturbations g of f . This trapping
region contains the support of an ergodic acip µg of the perturbed map
g. Using the density of periodic points in the support of the acips we
show that µg is unique, i.e., no other ergodic acip of g has its support
inside Uµ(g). So we have a well defined map Θg : µ 7→ µg from the set
of ergodic acips of f to the set of ergodic acips of g. Then we prove
that Θg is a bijection. This shows that f and g have the same number
of ergodic acips. Working in a similar way, we conclude that f and g
have the same number of mixing components.

In addition to determining the number of ergodic components, the
method for proving Theorem 1.1 provides a topological description and
the continuity of the immediate basins of attraction, which comple-
ments the results obtained by a spectral approach [8, 9].

Our motivation to study the combinatorial stability of piecewise ex-
panding maps comes from a special class of two-dimensional hyperbolic
maps with singularities, the strongly dissipative polygonal billiards [5].
We believe that the proof of Theorem 1.1 might be adapted to study the
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ergodic properties of two-dimensional attractors (supporting SRB mea-
sures) which are close, in an appropriate sense, to a one-dimensional
attractor of a piecewise expanding map. The combinatorial stability
for this class of two-dimensional maps will be treated in a separate
paper.

The rest of the paper is organized as follows. In Section 2 we in-
troduce some notation and recall a well-known theorem concerning the
existence of acips for piecewise expanding maps. Several topological
properties of the attractor are proved in Section 3. In Section 4, we
prove our main result regarding the combinatorial stability of piecewise
expanding maps.

2. Preliminaries

Let f be a piecewise expanding map. Throughout the paper, we use
the standard abbreviation acip for an invariant probability measure of
f that is absolutely continuous with respect to the Lebesgue measure
of [0, 1]. We also write ‘(mod 0)’ to specify that an equality holds up
to a set of zero Lebesgue measure. The length of an interval I ⊆ [0, 1]
is denoted by |I|. Given any subset A ⊂ [0, 1], its boundary ∂A and
interior int(A) are taken relative to R.

2.1. Existence of acips. Given a Borel measure µ, we denote by
suppµ the smallest closed set of full µ-measure.

We say that the pair (f, µ), where µ is an acip of f , is exact2 if
∞⋂
n=0

f−n(B)

consists of µ-null sets and its complements. Here, B denotes the Borel
σ-algebra.

Theorem 2.1. Let f be a piecewise expanding map. Then,

(1) there exists 1 ≤ k ≤ m such that f has exactly k ergodic acip’s
µ1, . . . , µk with bounded variation densities,

(2) for every 1 ≤ i ≤ k, there exist ki ∈ N and an acip νi of fki

such that
(a)

µi =
1

ki

ki−1∑
j=0

f j∗νi

(b) (fki , f j∗νi) is exact for all j,
(3) supp f j∗νi and suppµi are both unions of finitely many pairwise

disjoint intervals, for all j,
(4) the union of the basins of µ1, . . . , µk is equal (mod 0) to [0, 1].

2By [3, Theorem 3.4.3], (f, µ) is exact if and only if for any Borel set B ⊂ [0, 1]
with µ(B) > 0, limn→∞ µ(fn(B)) = 1.
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Proof. Notice that, by [3, pp. 17 and Theorem 2.3.3], 1/|f ′| has bounded
variation. Thus, Parts (1) and (2) are proved in [3, Theorems 7.2.1 and
8.2.1]. It suffices to prove Part (3) for supp f j∗νi which we do apply-
ing [3, Theorem 8.2.2] to the acip f j∗νi of fki . Part (4) is proved in [12,
Theorem 3.1, Corollary 3.14]. �

Let
Λi,j := supp f j∗νi (2.1)

We call Λi,1, . . . ,Λi,ki and ki in Theorem 2.1 the mixing3 components
and the mixing period of µi, respectively. We also define Per(µi) := ki.

2.2. Topology. Now we introduce a topology on the space of piecewise
expanding maps. Recall that a piecewise expanding map f is defined
by a partition Pf = {I1, . . . , Im} of the interval [0, 1] with boundary
points

0 = a0 < a1 < · · · < am−1 < am = 1. (2.2)

To stress the dependence of Ii and ai on f we shall write Ii(f) and
ai(f), respectively.

Denote by Xm the set of piecewise expanding maps on m intervals.
Given f, g ∈ Xm define

d(f, g) := ρ(Pf ,Pg) + ρ0(f, g) + ρLip(f ′, g′),

where

ρ(Pf ,Pg) := max
1≤i≤m−1

|ai(f)− ai(g)|

ρ0(f, g) := max
1≤i≤m

‖f − g ◦ ηi‖C0(Ii(f))

ρLip(f ′, g′) := max
1≤i≤m

{
‖f ′ − g′ ◦ ηi‖Lip(Ii(f)) + ‖g′ − f ′ ◦ η−1

i ‖Lip(Ii(g))

}
and ηi : Ii(f) → Ii(g) is the affine function that maps ai(f) to ai(g).
Here, ‖ · ‖C0 and ‖ · ‖Lip denote the usual norm of a continuous and
Lipschitz function, respectively. Clearly, d is a metric, thus (Xm, d) is
a metric space. In fact, (Xm, d) is a complete metric space.

In this paper, a neighbourhood V of f is always to be understood in
the metric d. Notice that, given any sequence of piecewise expanding
maps fn ∈ Xm converging to f ∈ Xm, fn also converges to f in the
Skorokhod-like metric (cf. [4]).

3. Topological properties

Let f denote a piecewise expanding map. In this section we derive
several topological properties of the attractor of f . Some of these prop-
erties will be used to prove the combinatorial stability of the attractor
(see Theorem 4.1).

3In view of Part (2) of Theorem 2.1, one may be tempted to call these components
exact rather than mixing. However, mixing and exactness are equivalent concepts
for a piecewise expanding map [3, Theorem 7.2.1].
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3.1. Boundary segments. Let

D = Df := {a1, . . . , am−1}, (3.1)

where ai are the points in (2.2) forming the partition Pf of f . We
denote by Dfn the set of points x ∈ [0, 1] such that fk(x) ∈ D for some
0 ≤ k < n. Define f(x±) := limy→x± f(y) and f ′(x±) := limy→x± f

′(y)
for every x ∈ (0, 1). To simplify the presentation, when x ∈ {0, 1} we
set f(x±) = f(x) and f ′(x±) = f ′(x). Similarly, we define fn(x±) :=
limz→x± f

n(z), for n ≥ 0

Definition 3.1. A forward orbit of x ∈ [0, 1] is a sequence {xn}n≥0

such that x0 = x and either xn = fn(x+
0 ) for every n ≥ 0 or else

xn = fn(x−0 ) for every n ≥ 0. An orbit segment starting at x ∈ [0, 1]
and ending at y ∈ [0, 1] is a finite sequence {x0, . . . , xn} with n > 0
such that x0 = x, xn = y and either xk = fk(x+

0 ) for every k = 0, . . . , n
or else xk = fk(x−0 ) for every k = 0, . . . , n. The integer n is called the
length of the orbit segment.

Notice that any point x ∈ (0, 1) has exactly two distinct forward
orbits if and only if x is a point of discontinuity for some fn with
n ≥ 1. A point x ∈ [0, 1] is called regular if x /∈ Dfn for every n ≥ 1.
Clearly, Lebesgue almost every x ∈ [0, 1] is regular.

Let µ be an ergodic acip of f and define

Aµ := suppµ.

Definition 3.2. An orbit segment {x0, . . . , xn} is called a boundary
segment of µ if

(1) x0 ∈ D ∩ int(Aµ),
(2) xi ∈ ∂Aµ, for all i = 1, . . . , n− 1,
(3) either xn = xk for some 1 ≤ k < n or else xn ∈ int(Aµ).

In the following lemma we show that the boundary of Aµ is deter-
mined by boundary segments.

Lemma 3.3. Every x ∈ ∂Aµ belongs to a boundary segment of µ.

Proof. We claim that every x ∈ ∂Aµ is contained in an orbit segment
{x0, . . . , xp} starting at a point in D ∩ int(Aµ) such that xk ∈ ∂Aµ for
every 1 ≤ k ≤ p. Indeed given x ∈ ∂Aµ, let

E =
{
y ∈ Aµ : ∃n ∈ N, fn(y±) = x

}
.

Notice that int(Aµ) ∩ E 6= ∅. Indeed, suppose by contradiction that
E ⊆ ∂Aµ. Denoting by Eδ a δ-neighbourhood of E in Aµ, since E is
finite we have that f−1(Eδ) ∩ Aµ ⊆ Eδ for some small enough δ > 0.
Thus, f(Aµ \ Eδ) ⊆ Aµ \ Eδ which contradicts the ergodicity of µ. So
let y ∈ int(Aµ) ∩ E such that fn(y±) = x for the least possible n ≥ 1.
Then y ∈ D, because f(y±) ∈ ∂Aµ. This proves the claim.
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Consider now a forward orbit {zn}n≥0 of x contained in Aµ. Such a
forward orbit always exists since f(Aµ \D) ⊆ Aµ. If zn ∈ ∂Aµ for all
n ≥ 1, since ∂Aµ is finite, there exists 1 ≤ i < n such that zn = zi.
Otherwise, there exists n ≥ 1 such that zn ∈ int(Aµ). In any case, we
obtain a boundary segment containing x.

�

Example 3.4. Consider the tent map f : [0, 1] → [0, 1] defined by
f(x) = 2x if x ≤ 1/2 else f(x) = 2 − 2x. Notice that f has a unique
ergodic acip µ which is the Lebesgue measure on [0, 1]. This means that
∂Aµ = {0, 1}. The tent map has a single boundary segment {1/2, 1, 0}.

Lemma 3.5. Suppose that µ1 and µ2 are two distinct ergodic acip’s of
f . If Aµ1 ∩ Aµ2 6= ∅, then there exist a boundary segment of µ1 and a
boundary segment of µ2 both ending at the same point of D or at the
same periodic point belonging to (0, 1).

Proof. Let x ∈ ∂Aµ1 ∩∂Aµ2 , and suppose that fn(x) /∈ D for all n ≥ 0,
i.e., the forward orbit of x does not contain elements of D. Hence,
fn+1 is continuous at each fn(x). Since f(Aµi \D) ⊂ Aµi for i = 1, 2,
it follows that fn(x) ∈ ∂Aµ1 ∩ ∂Aµ2 ∩ (0, 1) for all n ≥ 0. However,
∂Aµ1 ∩ ∂Aµ2 is finite, and so x must be pre-periodic. By Lemma 3.3,
the claim follows. �

3.2. Generic condition. In this section we introduce a generic condi-
tion that is sufficient to prove the combinatorial stability in Section 4.

Definition 3.6. We say that f satisfies the condition (?) if there is no
orbit segment starting in D and ending at a periodic point in (0, 1) or
at a point in D

Example 3.7. The doubling map f(x) = 2x (mod 1), x ∈ [0, 1] satis-
fies the condition (?).

See Figure 1 for an illustration of the condition (?). In the following
we enumerate several consequences of condition (?).

Lemma 3.8. If f satisfies the condition (?), then for every ergodic
acips µ, ν of f the following holds:

(1) Aµ ∩ Aν = ∅ whenever µ 6= ν.
(2) The mixing components of µ are separated, i.e.,

Λi,j ∩ Λi′,j′ = ∅, whenever (i, j) 6= (i′, j′).

(3) D ∩ ∂Aµ = ∅.
(4) (0, 1) ∩ ∂Aµ does not contain any periodic point.

Proof. Condition (1) follows directly from Lemma 3.5. To prove (2),
apply Lemma 3.5 to the ergodic acip’s f j∗νi and f j

′
∗ νi′ of fkiki′ where ki

and ki′ are the mixing periods of νi and νi′ , respectively. By Lemma 3.3,
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any point in ∂Aµ belongs to an orbit segment starting in D. So, condi-
tion (3) follows from the fact that no orbit segment can start and end
in D, and condition (4) follows from the fact that no point in D can
be pre-periodic. �

Next, we show that the condition (?) is generic in the space of piece-
wise expanding maps.

Proposition 3.9. The set of piecewise expanding maps f ∈ Xm satis-
fying the condition (?) is residual in Xm.

Proof. Given integers p, n ∈ N and k ≥ 0 let Yp,n,k be the set of maps
f ∈ Xm such that there exists x ∈ Df with fn+k(z) = fk(z) and
z := fp(x±). Similarly, given p ∈ N let Zp be the set of maps f ∈ Xm
such that there exist x ∈ Df and z ∈ Df with fp(x±) = z.

The sets Yp,n,k and Zp are closed with empty interior. Hence, their
union Wm over all integers is a meagre set. Hence, the set of maps
f ∈ Xm satisfying the condition (?) is residual. �

3.3. Saturation. Let I ⊂ [0, 1] be any open subinterval and consider
the open sets ωn(I) and Ωn(I) defined recursively,

ωn+1(I) = f(ωn(I) \D), ω0(I) = I,

and
Ωn(I) = ω0(I) ∪ · · · ∪ ωn(I).

Also define

Ω(I) :=
∞⋃
n=0

ωn(I). (3.2)

Lemma 3.10. There exist δ > 0 and N > 0 such that for any n ≥ N ,
every connected component of Ωn(I) has length ≥ δ.

Proof. Let δ(n) > 0 be the minimum length of the connected compo-
nents of Ωn(I) \ D. Since D is finite and the sequence of open sets
Ωn(I) is increasing, D ∩ Ω(I) = D ∩ Ωn0(I) for some n0 ≥ 0. Let us
show by induction that δ(n) ≥ δ(n0) for all n ≥ n0. The statement is
clearly true for n = n0. Suppose that the inequality is true for a given
n ≥ n0. Since Ωn(I) ⊂ Ωn+1(I), for each connected component C of
Ωn+1 \D, either C contains one connected component of Ωn(I) \D, or
C does not intersect Ωn(I), and in this case, it is equal to the image
of the union of finitely many connected components of Ωn(I) \ D. In
either case, the length of C is greater than or equal to δ(n0). The proof
is complete. �

Lemma 3.11. Ω(I) is a finite union of intervals.

Proof. Clearly, Ωn(I) is a finite union of intervals. By Lemma 3.10, the
set Ωn(I) has a lower bound on the size of the connected components
for every n sufficiently large. Hence, this implies a similar lower bound
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on the size of the connected components of Ω(I), thus proving the
lemma. �

Lemma 3.12. If (f, µ) is ergodic, then Aµ \ Ω(I) is a finite set for
every open interval I ⊂ Aµ.

Proof. By ergodicity, Ω(I) = Aµ (mod 0). Since Ω(I) is also a finite
union of intervals (see Lemma 3.11) the claim follows. �

3.4. Periodic orbits. Recall that [0, 1] =
⋃m
j Ij. Define `(f) = minj |Ij|,

where |Ij| denotes the length of Ij.

Lemma 3.13. Suppose f has least expansion coefficient σ > 2. Then
for every interval I ⊂ [0, 1], there exist i ≥ 1 and an open subinterval
W ⊂ I such that

(1) f i|W : W → int(Ij) is a diffeomorphism, for some 1 ≤ j ≤ m,
(2) f i+1(W ) is an open interval and |f i+1(W )| ≥ σ`(f).

Proof. Part (1). Let B =
⋃m
j=1 ∂Ij. We claim that given any interval

I ⊂ [0, 1], there exist i ∈ N and a subinterval W = (a, b) ⊂ I with
a, b ∈ f−i(B) such that

W ∩ f−k(B) = ∅ for 0 ≤ k ≤ i.

Indeed, if this was not the case, then for every i ≥ 1, no two consecutive
points of I ∩ (B ∪ f−1(B)∪ · · · ∪ f−i(B)) would belong to f−i(B). It is
not difficult to see that this would imply that f i(I) consists of at most
2i intervals. But σ > 2, and so the length of one of these intervals would
be not less than (σ/2)i → +∞, as i→ +∞, giving a contradiction. By
the definition of B, we have f i(W ) = int Ij for some j.

Part (2). From Part (1), it follows that f i+1(W ) = f(int Ij) is an
open interval, and so

|f i+1(W )| = |f(Ij)| ≥ σ|Ij| ≥ σ`(f).

�

Let µ be an ergodic acip of f . In the next theorem we prove, using
elementary methods, that the periodic points of f are dense in the
support of µ.

Theorem 3.14. The periodic points of f are dense in Aµ.

Proof. To obtain the wanted conclusion, we show that every open in-
terval U ⊂ Aµ contains a periodic point of f . Let k ∈ N such that fk

has least expansion coefficient > 2. Also, let Iµ be the collection of the
connected components of int(Aµ \Dfk).

By Lemma 3.12, we can assume that U ⊂ ΩN(I) for some large
enough integer N and all I ∈ Iµ. Then reducing the open interval U
even further we can assume that for every I ∈ Iµ there exists a positive
integer nI ≤ N such that U ⊂ ωnI

(I). We conclude that fnI |I′ : I ′ → U
is a diffeomorphism for some open subinterval I ′ ⊂ I.
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By Lemma 3.13, there exists an open subinterval W ⊂ U and i ≥ 1
such that g := f ik|W : W → I is a diffeomorphism for some I ∈ Iµ.

Let W ′ := g−1(I ′). Then f ik+nI |W ′ : W ′ → U is a diffeomorphism
and W ′ ⊂ W ⊂ U . Since f ik+nI is expanding, it has a fixed point
inside U . This proves the theorem. �

When f is continuous, the density of periodic points can be deduced
from the work of Hofbauer [7] on continuous piecewise monotonic maps.

In the next result we give a characterization for (f, µ) to be exact in
terms of periodic orbits.

Proposition 3.15. (f, µ) is exact if and only if any open set in Aµ
contains two periodic points having coprime periods.

Proof. If (f, µ) is not exact, then it has k ≥ 2 mixing components.
Therefore, there is an open set U in Aµ where k must divide the period
of any periodic point in U . This shows that the coprimality condition
of the periods is sufficient for exactness. To show that it is necessary,
suppose that (f, µ) is exact. By exactness, µ(fn(I))→ 1 as n→∞ for
any interval I ⊂ [0, 1]. Let U be an open subinterval of Aµ. Shrinking U
if necessary, for every I ∈ Iµ there exists a positive integer nI ≥ 1 such
that U ⊂ ωnI

(I) and U ⊂ ωnI+1(I). Here, Iµ denotes the collection of
the connected components of int(Aµ \ D). Arguing as in the proof of
Theorem 3.14, we conclude that both f i+nI and f i+nI+1 have a fixed
point inside U for some I ∈ Iµ and integer i ≥ 1. Since U is arbitrary,
this shows the existence of two periodic orbits with coprime periods in
any open set in Aµ. �

Remark 3.16. The existence of a fixed point in Aµ is not sufficient
to show that (f, µ) is exact. Indeed, consider the orientation-reversing
Lorenz map f(x) = 1− a(x− 1/2) (mod 1) with a =

√
2.

Remark 3.17. Let µ be an ergodic acip with separated mixing compo-
nents (see Part (2) of Lemma 3.8). If Aµ contains two periodic points
with coprime periods, then (f, µ) is exact.

4. Combinatorial Stability

In this section, we prove that a piecewise expanding map f is com-
binatorially stable provided it satisfies the condition (?). Recall by
Proposition 3.9, the condition (?) is generic in the space of piecewise
expanding maps on m intervals.

Let E(f) denote the finite set of ergodic acip’s of f .

Theorem 4.1. If f ∈ Xm satisfies the condition (?), then there is a
neighbourhood V of f in Xm such that for every g ∈ V, there is a bijec-
tion Θg between E(f) and E(g) satisfying Θf = id and Per(Θg(µ)) =
Per(µ) for every µ ∈ E(f) and g ∈ V. Furthermore, for every µ ∈ E(f),
the map V 3 g 7→ AΘg(µ) is continuous at f with respect to the Haus-
dorff metric.
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Under the generic condition (?), Theorem 4.1 shows that the num-
ber of ergodic acip’s of f and the corresponding mixing periods do
not change in a neighbourhood of f , a property we call combinatorial
stability.

Theorem 4.1 is proved in Section 4.2. In the following we prove
several preliminary lemmas.

4.1. Perturbation lemmas. The following lemma follows from stan-
dard considerations in hyperbolic theory. For the convenience of the
reader we include here a proof.

Lemma 4.2. Let x ∈ [0, 1] be a regular periodic point of f . There is a
neighbourhood V of f and a continuous map g 7→ xg defined on V such
that xg is a periodic point of g having the same period of x.

Proof. Let k > 0 be the period of x. Since f is expanding there is
an interval J containing x and with closure not intersecting D such
that fk(J) is an interval, J ⊂ fk(J) and hf := fk|J is a bijection. By
continuity, there is a neighbourhood V of f such that the same holds for
every g ∈ V , in particular hg := gk|J is a bijection. Consider the map
ϕ : V × J → J defined by ϕ(g, x) = h−1

g (x). Clearly, ϕ is continuous
and ϕ(g, ·) is a uniform contraction. Therefore, by the contraction fixed
point theorem (continuous dependence of parameters version), ϕ(g, ·)
has a unique fixed point xg which depends continuously on g ∈ V . �

We say that xg is the continuation of x by g.

Let µ be an ergodic acip of f . In the following lemma we use the
boundary segments associated to ∂Aµ to define a closed forward invari-
ant set for small perturbations of f .

Lemma 4.3. If D∩∂Aµ = ∅ and (0, 1)∩∂Aµ does not contain periodic
points, then there exist a neighbourhood V of f and a continuous4 map
g 7→ Uµ(g) defined on V such that

(1) Uµ(f) = Aµ,
(2) Uµ(g) is a finite union of closed intervals for every g ∈ V,
(3) g(Uµ(g)) ⊆ Uµ(g) for every g ∈ V.

Proof. Notice that, for every x ∈ D ∩ int(Aµ) we have f(x±) ∈ Aµ.
By slightly abusing notation we shall call the points in D ∩ int(Aµ)
together with their images that satisfy f(x±) ∈ int(Aµ) also boundary
segments. Consider the collection B of all boundary segments of µ.
Clearly, given d ∈ D ∩ int(Aµ) there is γ = {x0, . . . , xn} ∈ B such that
x0 = d. Moreover, by Lemma 3.3, every point in ∂Aµ is contained in a
boundary segment in B. Notice that, two or more points in ∂Aµ may
be covered by a single boundary segment and a single point in ∂Aµ
may be covered by more than one boundary segment.

4In the Hausdorff metric.
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By the hypothesis D∩∂Aµ = ∅, we have f(Aµ) ⊆ Aµ. This together
with the hypothesis (0, 1) ∩ ∂Aµ has no periodic points, implies that
given any boundary segment γ = {x0, . . . , xn} ∈ B it satisfies the
properties:

(1) x1 = f(x±0 ) and x0 ∈ D ∩ int(Aµ),
(2) xi+1 = f(xi) for each i = 1, . . . , n− 1,
(3) xi ∈ ∂Aµ and xi /∈ D for each i = 1, . . . , n− 1,
(4) one of the following alternatives hold:

(a) xn ∈ int(Aµ),
(b) xn = xn−2 ∈ {0, 1},
(c) xn = xn−1 ∈ {0, 1}.

For each x ∈ ∂Aµ let Bx ⊂ B denote the collection of all boundary
segments passing through x. By previous observations, Bx 6= ∅. So we
may define the order of x ∈ ∂Aµ to be

ord(x) := max{k ∈ N : xk = x for some {x0, . . . , xn} ∈ Bx}.
It is convenient to set ord(x) = 0 for any x ∈ D∩ int(Aµ). Notice that,
ord(z) ≤ ord(x) whenever x = f(z±) with x, z ∈ ∂Aµ ∪ (D ∩ int(Aµ)).

Define E := ∂Aµ∪ (D∩ int(Aµ)). The points in E induce a partition
of Aµ as a union of closed intervals,

Aµ = [α0, β0] ∪ [α1, β1] · · · ∪ [αq, βq],

where α0 < β0 ≤ α1 < β1 ≤ · · · ≤ αq < βq and αi, βi ∈ E. Notice
that two consecutive intervals are either disjoint or intersect at a single
point belonging to D ∩ int(Aµ).

Now, let g ∈ V where V is an ε-neighbourhood of f and ε > 0 is
sufficiently small. We define a map ϕg : E → [0, 1] in the following
way. Given x ∈ D ∩ int(Aµ), we set ϕg(x) := ai(g) where x = ai(f)
for some 1 ≤ i ≤ m − 1. Otherwise, suppose that x ∈ ∂Aµ. We have
two cases. Either x is periodic under f or x is not periodic. In the
first case, x ∈ {0, 1}, and we set ϕg(x) = x. In the second case, we will
define ϕg on E inductively on the order of the points. So suppose that
ϕg has been defined for points in E whose order is ≤ n. Let x ∈ E
such that ord(x) = n+ 1. We suppose that x is a left boundary point
of ∂Aµ, i.e., [x, x+ δ] ⊂ Aµ for δ > 0 small. The case of x being a right
boundary of Aµ is treated similarly (the min below becomes a max).
Then we define

ϕg(x) := min{g(ϕg(z)±) : z ∈ E, x = f(z±)}.
In this way we have a well-defined map ϕg : E → [0, 1]. Choosing ε > 0
smaller, if necessary, ϕg becomes injective. Moreover, ϕf = id. Using
the map ϕg we finally define,

Uµ(g) := [ϕg(α0), ϕg(β0)] ∪ · · · ∪ [ϕg(αq), ϕg(βq)] .

Now it is simple to check that Uµ(g) satisfies all properties stated in
the lemma. �



12 DEL MAGNO, LOPES DIAS, DUARTE, AND GAIVÃO

Recall that [0, 1] =
⋃m
j Ij and `(f) = minj |Ij|, where |Ij| denotes

the length of Ij.

Lemma 4.4. If f has no orbit segment connecting points in D, then
there is a neighbourhood V of f and a constant η = η(V) > 0 such that
for every interval I ⊂ [0, 1] there exists n ≥ 1 for which gn(I) contains
an open interval of length greater than 2η for every g ∈ V.

Proof. Apply Lemma 3.13 to fk with k > 0 being the smallest integer
such that the least expansion of fk is greater than 2. Then n = ik,
where i is as in Lemma 3.13 (applied to fk), and η(f) = `(fk).

Let η := ming∈V η(g). Because f has no orbits segments connecting
points in D, for every g sufficiently close to f , the set Dgk has the
same cardinality and is close to the set Dfk , i.e., no discontinuity of
fk bifurcates into 2 or more distinct discontinuities of gk. Thus, η > 0
and the integer n can be made uniform (not depending on g). The
conclusion of the lemma follows. �

Remark 4.5. In the previous lemma it is sufficient to assume the
weaker hypothesis that f has no segments of order less or equal than
k connecting points in D.

Definition 4.6. Given points x, y ∈ [0, 1] we say that x leads to y
under f , and write x y, if for every neighbourhood V of x there exists
n ≥ 0 such that y ∈ fn(V ). We say that two points are heteroclinically
related under f if x y and y  x.

Clearly, the heteroclinic relation is an equivalence relation. Another
key observation is that the heteroclinic relation between periodic points
is stable under perturbation.

Lemma 4.7. If two regular periodic points x and y of f are hetero-
clinically related under f , then there is a neighbourhood V of f such
that for every g ∈ V the continuations xg and yg of the periodic points
x and y are also heteroclinically related under g.

Proof. Let x and y be two regular periodic points for f such that x y.
By Lemma 4.2, x and y have continuations xg and yg for every g ∈ V
where V is a neighbourhood of f . We will show that xg  yg. Denote
by p the period of x and xg. Define

τ :=
1

2
inf
g∈V

dist(xg, Dgp) > 0.

Notice that Iτ (xg)∩Dgp = ∅ for every g ∈ V where Iτ (z) := (z− τ, z+
τ). Since x  y, there is n = n(x, τ) ≥ 0 such that y ∈ fn(Iτ (x)).
Shrinking V if necessary, we may assume that yg ∈ gn(Iτ (xg)) for every
g ∈ V . Now let J be any interval containing xg. Since g is expanding,
there is k ≥ 0 such that Iτ (xg) ⊂ gkp(J). Thus, yg ∈ gkp+n(J). This
shows that xg  yg. �
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4.2. Proof of Theorem 4.1. Let µ ∈ E(f) be an ergodic acip of a
piecewise expanding map f satisfying the condition (?).

We divide the proof of Theorem 4.1 in four lemmas. Throughout
the proof, we assume that the neighbourhood V of f is chosen to be
sufficiently small so that the hypothesis of the perturbation lemmas are
verified.

Lemma 4.8. There is a neighbourhood V of f such that for each g ∈ V,
there exists a unique ν ∈ E(g) such that Aν ⊆ Uµ(g).

Proof. By Lemma 3.8, f satisfies the hypothesis of Lemma 4.3 and
Lemma 4.4. Let V be a neighbourhood of f for which the conclusion
of Lemma 4.3 holds. Given g ∈ V , the existence of ν ∈ E(g) such
that Aν ⊆ Uµ(g) follows directly from Part (3) of Lemma 4.3 and
Theorem 2.1.

To prove the uniqueness, suppose that ν1 and ν2 are two ergodic
acips of g ∈ V whose supports are contained in Uµ(g). We want to
show that ν1 = ν2.

Take η = η(V) > 0 given by Lemma 4.4. Let k ∈ N such that fk

has least expansion coefficient > 2. Also let Iµ be the set of connected
components of int(Aµ \Dfk) and Ω the intersection of Ω(I) over all I
belonging to Iµ. Recall that Ω(I) is defined in (3.2). By Lemma 3.12,
Ω equals Aµ except for a finite set of points, which we denote by E.
Since periodic points are dense in Aµ (by Theorem 3.14), we can take
a η/3-dense set X := {x1, . . . , xr} ⊂ Ω \ D of regular periodic points
of f such that xi and xj are heteroclinically related under f for all
1 ≤ i, j ≤ r. Indeed, by Lemma 3.13, for any x ∈ X there is I ∈ Iµ
such that I ⊂ fnk(V ) for some n ∈ N and neighbourhood V of x. But
Ω(I) contains Aµ \ E. Therefore, x y for any y ∈ X.

Let X ′ := {x′1, . . . , x′r} denote the set of continuations of the periodic
points in X for some nearby map g ∈ V . According to Lemma 4.7,
by choosing V sufficiently small, we can assume that x′i and x′j are
heteroclinically related under g for all 1 ≤ i, j ≤ r. We can also
assume that

∣∣xj − x′j∣∣ < η/3 for all j = 1, . . . , r and that the Hausdorff
distance between Uµ(f) and Uµ(g) is also less than η/3. This follows
from the continuity of the maps in Lemma 4.2 and Lemma 4.3.

Take now points yi ∈ Aνi ⊆ Uµ(g) and neighbourhoods Vi of yi in
Aνi . By Lemma 4.4, there exist subintervals Ii ⊂ Vi, integers ni ≥ 1
and points zi ∈ Uµ(g) such that gni(Ii) = (zi − η, zi + η). Because of
the previous considerations,

dist(zi, X
′) ≤ dist(Uµ(g), Uµ(f)) + dist(Uµ(f), X) + dist(X,X ′)

<
η

3
+
η

3
+
η

3
= η.

Thus, gni(Ii) ∩X ′ 6= ∅ which implies that yi leads to a periodic point
in X ′ under g. Finally, since the points yi ∈ Aνi are arbitrary, and
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all points in X ′ are heteroclinically related under g, it follows that
ν1 = ν2. �

Lemma 4.8 shows that we have a well-defined map for every g ∈ V ,

Θg : E(f)→ E(g), µ 7→ ν,

where ν ∈ E(g) comes from Lemma 4.8. Clearly, Θf = id. In the
following two lemmas we show that Θg is a bijection as stated in The-
orem 4.1.

Lemma 4.9. The map Θg is one-to-one.

Proof. By Part 1 of Lemma 3.8, Aµ1 ∩ Aµ2 = ∅ for every µ1 6= µ2

in E(f). We can further suppose that V is sufficiently small so that
Uµ1(g) ∩ Uµ2(g) = ∅ for every g ∈ V and every µ1 6= µ2 in E(f). Now
suppose that ν = Θg(µ1) = Θg(µ2). But, Aν ⊆ Uµi(g) which can only
happen if µ1 = µ2. �

Lemma 4.10. The map Θg is onto.

Proof. By Part (3) of Theorem 2.1, the union B of all basins of at-
traction B(µi) over the elements µi ∈ E(f) coincides with the interval
[0, 1] up to a zero Lebesgue measure set. By Lemma 3.8, f satisfies
the hypothesis of Lemma 4.4. Let η = η(V) > 0 be the constant in
Lemma 4.4.

Given µ ∈ E(f), let ϕ be a continuous function having compact
support inside int(Aµ). It follows that

lim
n→∞

1

n

n−1∑
k=0

ϕ(fk(x)) =

∫
ϕdµ > 0, ∀x ∈ B(µ).

Hence, for every x ∈ B(µ) there are infinitely many integers ki ≥ 0
such that fki(x) ∈ int(Aµ). This implies that there is an η/2-dense set
Z := {z1, . . . , zr} ⊂ B of [0, 1] such that for every zi ∈ Z, we can find
k ∈ N and µ ∈ E(f) for which fk(zi) ∈ int(Aµ).

Now, let µ′ ∈ E(g) and take y ∈ Aµ′ . Also let W be a neighbourhood
of y in Aµ′ . By Lemma 4.4, there is n ∈ N such that gn(W ) contains
an interval of length greater than or equal to η. Thus, gn(W ) contains
in its interior a point zi ∈ Z, i.e., y leads to zi under g. It follows that
the intersection gn+ti(W )∩Uµji (g) contains an interval for some ti ≥ 0
and 1 ≤ ji ≤ #E(f). Arguing as in the proof of Lemma 4.8, this shows
that µ′ = Θg(µji), and thus Θg is onto.

�

It remains to show that f and g ∈ V have the same number of mixing
components.

Lemma 4.11. Per(Θg(µ)) = Per(µ) for every µ ∈ E(f) and g ∈ V.
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Proof. Consider an ergodic acip µ for f . Let k := Per(µ) and denote
by Λi with 1 ≤ i ≤ k, the mixing components of µ. We can write,

Uµ(g) = U (1)
µ (g) ∪ · · · ∪ U (k)

µ (g)

where U
(i)
µ (g) are the continuations of Λi ⊂ Uµ(f) = Aµ, i.e., the

connected components of Uµ(g) which intersect Λi and U
(i)
µ (f) = Λi.

Since f satisfies Part 2 of Lemma 3.8, the sets U
(i)
µ (g) are pairwise

disjoint for every g ∈ V .
Let µ′ := Θg(µ) be the unique ergodic acip for g ∈ V such that

Aµ′ ⊆ Uµ(g) and define k′ := Per(µ′). We first notice that k divides k′

because

gk(U (j)
µ (g)) ⊆ U (j)

µ (g), ∀ j = 0, . . . , k − 1.

To prove that k = k′ we will assume without loss of generality that
k = 1. For the general case we can replace g by gk, resp. f by fk. So
we suppose that f has a unique mixing component Aµ, i.e., (f, µ) is
exact.

Let η = η(V) > 0 be the constant in Lemma 4.4 and X ⊂ Aµ be a
finite set of regular periodic points of f with the property that every
sub-interval J ⊂ Aµ of length greater or equal than η/2 contains at
least two periodic points in X with coprime periods. This is possible
by Proposition 3.15.

Shrinking the neighbourhood V if necessary, we may assume that
Aµ∩Aµ′ contains an interval I whose length is ≥ η/2. Thus, I contains
two periodic points x and y in X with coprime periods. According to
Lemma 4.2, these periodic points have continuations xg, yg ∈ I for
every g ∈ V whose periods are coprime as well. Thus, by Remark 3.17,
we conclude that (g, µ′) is exact.

�

Finally, to complete the proof of Theorem 4.1, it remains to prove
that the map g 3 V 7→ AΘg(µ) is continuous at f . By Lemma 4.3 and
because Aµ = Uµ(f), the map g 3 V 7→ AΘg(µ) is upper semi-continuous
at f . The lower semi-continuity at f follows from the density of periodic
points (Theorem 3.14) and the fact that any finite set of heteroclinically
related regular periodic points is stable (Lemma 4.7).
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(a) A family of piecewise expanding maps where two
ergodic acips collide. The middle map has an orbit
segment connecting two discontinuous points.

(b) The discontinuity of the Lorenz map fa(x) = a (x−
1/2) (mod 1) with a =

√
2 is pre-periodic. For a <

√
2

the Lorenz family has one ergodic acip of period 2,
which becomes exact for a >

√
2.

(c) A family of piecewise expanding maps where the
support of the acip explodes. The middle map has a
discontiniuty at a boundary point of the acip’s support.

(d) A family of piecewise expanding maps where the
support of the acip explodes. The middle map has a
fixed point x > 1/2 which is a boundary point of the
acip’s support.

Figure 1. Examples of families of piecewise expanding
maps where the middle map does not satisfy the condi-
tion (?).
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