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Abstract. The disadvantage of ‘traditional’ multidimensional continued fraction al-
gorithms is that it is not known whether they provide simultaneous rational approxi-
mations for generic vectors. Following ideas of Dani, Lagarias and Kleinbock-Margulis
we describe a simple algorithm based on the dynamics of flows on the homogeneous
space SL(d,Z)\SL(d,R) (the space of lattices of covolume one) that indeed yields best
possible approximations to any irrational vector. The algorithm is ideally suited for a
number of dynamical applications that involve small divisor problems. As an example,
we explicitly construct a renormalization scheme for the linearization of vector fields
on tori of arbitrary dimension.

1. Introduction

The aims of this paper are two-fold. The first objective is to introduce a new multi-
dimensional continued fraction algorithm that is ideally suited for different dynamical
applications. The algorithm can be used in order to effectively deal with small divisors
whenever quasi-periodicity with several frequencies is an essential feature of a problem.
Our second goal is to demonstrate the strength of the algorithm by developing a renor-
malization approach to KAM theory. The method, being conceptually very simple,
is also very general, and allows us to consider a wide class of frequency vectors. For
reasons of clarity we restrict our attention to vectors satisfying an explicit Diophantine
condition (valid for a set of vectors of full Lebesgue measure); the extension to more
general frequency vectors follows straightforwardly from the approach presented here,
and will be detailed in a separate publication.

1.1. Continued fractions. The classical continued fraction algorithm produces, for
every irrational α ∈ R, a sequence of rational numbers pn/qn that approximate α up to
an error of order 1/q2

n. The first objective of this paper is to develop a multidimensional
analogue that allows us to approximate any irrational α ∈ Rd−1 by rational vectors.
The theory of multidimensional continued fractions has a long history going back to
Jacobi and Perron (see [30] for extensive reference). The “traditional” m.c.f. algorithms
(Jacobi-Perron algorithm etc) have many beautiful ergodic properties. Unfortunately,
the quality of approximations provided by them is very difficult to control. In fact, it
is not even known whether those algorithms give simultaneous rational approximations
for Lebesgue almost all α. In the case d ≥ 4 the only result in this direction is a recent
computer-assisted proof of the almost everywhere strong convergence for ordered Jacobi-
Perron algorithm [11, 12]. However, even in this case an explicit description of the set of
bad vectors seems difficult. For example, the existence of ‘noble’ vectors, that is vectors
corresponding to a periodic continued-fraction expansion, for which approximations do
not converge, is rather unsatisfactory. For these reasons, there has been only very limited
success in the application of traditional multidimensional algorithms in renormalization
schemes, in particular those involving typical frequency vectors.
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The algorithm we employ here does not suffer from such pathologies. Following
Lagarias’ seminal ideas in [21], our approach is based on the dynamics of the geodesic1

flow on the homogeneous space Γ\G with G = SL(d,R) and Γ = SL(d,Z). Notice that
Γ\G may be identified with the space of lattices in Rd of covolume one or, equivalently,
with the Teichmüller space of flat d-dimensional tori. Lagarias algorithm is, to the
best of our knowledge, the first that provides a strongly convergent multidimensional
continued fraction expansion for all vectors. The main advantage of our algorithm
is that in addition it allows for effective hyperbolicity estimates which are crucial in
dynamical renormalizations.

The problem of multidimensional continued fractions may be formulated in the fol-
lowing way. Given a vector α ∈ Rd−1 find a sequence of matrices T (n) ∈ GL(d,Z),
n ∈ N, such that the ‘cocycle’ corresponding to the products P (n) = T (n)T (n−1) . . . T (1)

exponentially contracts in the direction of the vector ω = ( α
1 ) ∈ Rd and exponentially

expands in all other directions. Thus, the cocycle should have one negative Lyapunov
exponent and d−1 positive. In this spirit, our algorithm comprises the following steps:2

(1) With every α ∈ Rd−1 associate the orbit {C(t) : t ≥ 0} ⊂ SL(d,R), where

C(t) =

(
1d−1 α

0 1

)(
1d−1e

−t 0
0 e(d−1)t

)
, (1.1)

1d−1 denotes the (d− 1)× (d− 1) unit matrix.
(2) Fix a Siegel set S.3 Given a sequence of times t1 < t2 < . . . → ∞, use classical

reduction theory to find matrices P (n) ∈ SL(d,Z) that map the points C(tn) to
S.

(3) Define the nth continued fraction map by

α(n−1) 7→ α(n) =
T

(n)
11 α(n−1) + t

(n)
12

>t(n)
21 α(n−1) + t

(n)
22

, (1.2)

where α(0) = α and

T (n) =

(
T

(n)
11 t

(n)
12

>t(n)
21 t

(n)
22

)
∈ SL(d,Z) (1.3)

is the nth transfer matrix defined by P (n) = T (n)P (n−1).

Note that the choice of matrices P (n) is not unique, and thus different choices will lead to
different algorithms. Uniqueness is guaranteed if one imposes the additional requirement
that P (n)C(tn) belongs to a fundamental domain F , as in Lagarias’ algorithm. However,
in this case, due to a very complicated geometry of fundamental domains, it is difficult to
control hyperbolic properties of the matrices T (n). On the other hand, the use of Siegel
sets allows us to relate these hyperbolic properties with the Diophantine properties of
vector α. Another important difference with the Lagarias algorithm is connected with a
choice of times tn. Lagarias requires a specific choice of tn that correspond to the times
the geodesic exits the fundamental domains. On the contrary, our algorithm, selects the
tn according to the diophantine properties of α: the better approximable by rationals
α is, the faster the tn have to increase with n in order to ensure the hyperbolicity of

1The term ‘geodesic’ is slightly inaccurate when d > 2. The orbits of the flow on Γ\G we are
discussing here correspond in fact to geodesics on the unit cotangent bundle of the space Γ\G/ SO(d)
for a certain family of initial conditions. Only for d = 2 the cotangent bundle can be identified with
Γ\G.

2The fact that we restrict our attention here to SL(d,Z) is not essential; the algorithm can readily
be extended to allow for approximation by elements from GL(d,Z).

3A Siegel set has the property that (a) it contains a fundamental domain F of SL(d,Z) in SL(d,R),
and (b) it is contained in a finite number of translates PF , P ∈ SL(d,Z).
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the transfer matrices. Only in the special case of badly approximable α the times tn
can be chosen to have bounded gaps tn − tn−1.

Notice that in dimension d = 2 Lagarias’ algorithm, and thus also our algorithm, do
not reduce to the classical continued fraction dynamics, see [10] for details. However, a
subsequence of exit times, called Hermite critical times, gives an accelerated version of
the standard continued fractions [21].

Since the action of SL(d,R) on Rd−1 by fractional linear transformation defines a
group action, we have

α(n) =
P

(n)
11 α + p

(n)
12

>p(n)
21 α + p

(n)
22

, (1.4)

where

P (n) = T (n)T (n−1) · · ·T (1) =

(
P

(n)
11 p

(n)
12

>p(n)
21 p

(n)
22

)
∈ SL(d,Z). (1.5)

1.2. Renormalization. Dani [5] and Kleinbock-Margulis [17] observed that Diophan-
tine properties of α translate to divergence properties of the corresponding orbit {ΓC(t) :
t ≥ 0} ⊂ Γ\G in the cusps of Γ\G. We exploit these results to show that, under mild
Diophantine conditions on α (satisfied by a set of α of full Lebesgue measure, cf. Sec.
2.6), there is a sequence of times tn such that the transfer matrices T (n) are uniformly
hyperbolic in a sense made precise in Sec. 2.8. This fact allows us to develop renor-
malization schemes for vector fields and Hamiltonian flows that had previously been
constructed only in dimension one [23] or for very special choices of α [1, 18, 19, 22]. In
this paper we focus on the case of vector fields, where, as in the traditional approaches
(cf. [28]), the proofs are technically slightly simpler than in the case of Hamiltonian
flows. Full details of the latter are given in [15].

We say ω ∈ Rd is Diophantine if there are constants ε > 0, C > 0 such that

‖k‖(d−1)(1+ε)|k · ω| > C, (1.6)

for all k ∈ Zd − {0}. Note that we may assume without loss of generality that ω is
of the form ω = ( α

1 ) with α ∈ Rd−1. Condition (1.6) then translates to a standard
Diophantine condition on α, see Sec. (2.6) for details.

Theorem 1.1. For any real analytic vector field v on Td, d ≥ 2, sufficiently close to a
constant vector field with Diophantine vector ω ∈ Rd, there is b > 0, an analytic curve
p : (−b, b) → Rd, s 7→ ps, and an analytic conjugacy h isotopic to the identity between
the flow generated by v + ps and the linear flow φt(x) = x + t(1 + s)ω on Td, t ≥ 0,
for each |s| < b. Moreover, the maps v 7→ h and v 7→ p are analytic.

Let us emphasize that the result holds for all analytic vector fields close to a constant
one without any additional conditions, such as preservation of volume etc.

The main strategy of the proof of the above theorem is as follows. Consider a vector
field X(x,y) = ω + f(x) + y where x ∈ Td, and y ∈ Rd is an auxiliary parameter.
The vector field f(x) is a sufficiently small analytic perturbation of a constant vector
field. We may furthermore assume that ω = ( α

1 ) for some Diophantine α ∈ Rd−1; this
achieved by a rescaling of time. The aim is to find a value of parameter y = yω such
that the vector field X(x,yω) is linearizable to a constant vector field identically equal
to ω by means of an analytic transformation of the coordinates on Td.

Renormalization is an iterative process, and we thus assume that after the (n− 1)th
renormalization step the vector field is of the slightly more general form

Xn−1(x,y) = ω(n−1) + fn−1(x,y) (1.7)
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where ω(n−1) = ( α(n−1)

1
) and α(n−1) is given by the continued fraction algorithm, cf.

(1.4). The Fourier modes of fn−1 are smaller than in the previous step, and decay
exponentially as ‖k‖ → +∞. We define a cone of resonant modes by a relation I+

n−1 =

{k ∈ Zd : |k · ω(n−1)| ≤ σn−1‖k‖}. The nth step requires the following operations.

(1) Eliminate all Fourier modes outside of the resonant cone I+
n−1.

(2) Apply a linear operator corresponding to a coordinate transformation given by

the inverse transfer matrix T (n)−1
.

(3) Rescale time to ensure that the frequency vector is of the form ω(n) = ( α(n)

1
).

The conjugate action on the Fourier modes is given by k 7→ >T (n)−1
k. It follows from

the hyperbolicity of T (n) that this transformation contracts for k ∈ I+
n−1 if σn−1 is small

enough. This gives a significant improvement of the analyticity domain which results
in the decrease of the estimates for the corresponding Fourier modes. As a result,
all Fourier modes apart from the zero modes get smaller. To decrease the size of the
latter, we choose a parameter y = yn in such a way that the corresponding zero modes
vanish, and then consider a neighbourhood of y-values centred at yn. That is, the
auxiliary parameter y is used to eliminate an instability in the direction of constant
vector fields. To get enough control on the parameter dependence we perform an affine
rescaling of this parameter on every renormalization step. One can then show that the
corresponding sequence of parameter domains is nested and converges to a single point
y = yω for which the initial vector field is indeed linearizable.

In order for the scheme to be effective, the sequence of stopping times tn and the
sizes of the resonant cones defined by the sequence of σn must be chosen properly.
Large intervals δtn = tn − tn−1 improve hyperbolicity but, on the other hand, worsen

estimates for the norms ‖T (n)‖, ‖T (n)−1‖. Similarly, if σn is too small the elimination
of non-resonant modes will give large contributions; on the other hand, for large values

of σn the multiplication by >T (n+1)−1
will not yield a contraction for k ∈ I+

n . As we
shall show below a right choice of sequences {(tn, σn)} can be made, depending on the
Diophantine properties of the vector ω.

The mechanism of convergence of renormalizations is well undersood by now. The
main framework was developed in [18] for special frequency vectors. Our proof of
convergence of the renormalizations follows the same basic steps. However, there are
several essential differences. The most important one is related to our choice of a
sequence tn which we discussed above. In fact, the use of long intervals δtn = tn − tn−1

simplifies the estimates and makes the proof more transparent. Another important
point is connected with the construction of the analytic conjugacy h. That is built
as h = limhn where hn is the composition of P (n) with the coordinate transfomations
used in all renormalization steps up to the nth one. The domain of analyticity for
each hn is a complex strip around Rd with width ρn‖P (n)‖−1, where ρn is the width of
analyticity strip for the vector fields at the corresponding step. In d = 2, using standard
continued fractions, the ratio ρn‖P (n)‖−1 is bounded from below ([24]). However, in the
multidimensional case, since we do not have such a bound, we have to consider shrinking
domains. As a result, the conjugacy h is only C1 on Rd. To recover analyticity, we use
the analytic dependence of the conjugacy on the initial vector field (Theorem 3.19).

The above arguments are adapted in [15] to the case of Hamiltonian flows, which is
technically slightly more challenging. Let B ⊂ Rd, d ≥ 2, be an open set containing the
origin, and let H0 be a real-analytic Hamiltonian function

H0(x,y) = ω · y +
1

2
>yQy, (x,y) ∈ Td ×B, (1.8)
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with ω ∈ Rd and a real symmetric d × d matrix Q. It is said to be non-degenerate if
detQ 6= 0.

Theorem 1.2. Suppose H0 is non-degenerate and ω is Diophantine. If H is a real
analytic Hamiltonian on Td × B sufficiently close to H0, then the Hamiltonian flow of
H leaves invariant a Lagrangian d-dimensional torus where it is analytically conjugated
to the linear flow φt(x) = x + tω on Td, t ≥ 0. The conjugacy depends analytically on
H.

1.3. A brief review. The idea of renormalization was introduced to the theory of
dynamical systems by Feigenbaum [6] in the late 1970’s. In the case of Hamiltonian
systems with two degrees of freedom MacKay proposed in the early 1980’s a renor-
malization scheme for the construction of KAM invariant tori [25]. The scheme was
realized for the construction of invariant curves for two-dimensional conservative maps
of the cylinder. An important feature of MacKay’s approach is the analysis of both
smooth KAM invariant curves and so-called critical curves corresponding to critical
values of a parameter above which invariant curves no longer exist. From the point
of view of renormalization theory the KAM curves correspond to a trivial linear fixed
point for the renormalization transformations, while critical curves give rise to very
complicated fixed points with nontrivial critical behavior. MacKay’s renormalization
scheme was carried out only for a small class of Diophantine rotation numbers with
periodic continued fraction expansion (such as the golden mean). Khanin and Sinai
studied a different renormalization scheme for general Diophantine rotation numbers
[16]. Both of the above early approaches were based on renormalization for maps or
their generating functions. Essentially, the renormalization transformations are defined
in the space of pairs of mappings which, being iterates of the same map, commute with
each other. These commutativity conditions cause difficult technical problems, and led
MacKay [26] to propose the development of alternative renormalization schemes act-
ing directly on vector fields. The same idea was realized by Koch [18] who proves a
KAM type result for analytic perturbations of linear Hamiltonians H0(x,y) = ω ·y, for
frequencies ω which are eigenvectors of hyperbolic matrices in SL(d,Z) with only one
unstable direction. Notice that the set of such frequencies has zero Lebesgue measure
and in the case d = 2 corresponds to vectors with a quadratic irrational slope. Further
improvements and applications of Koch’s techniques appeared in [1, 19, 22, 23, 7], em-
phasizing the connection between KAM and renormalization theories. The results of
this paper illustrate that such a programme can indeed be carried out in considerable
generality. Another direction was followed in [20], presenting a computer-assisted proof
of the existence of MacKay’s golden mean critical renormalization fixed point in the
context of Hamiltonian vector fields with two degrees of freedom.

Other renormalization ideas have appeared in the context of the stability of invariant
tori for nearly integrable Hamiltonian systems inspired by quantum field theory and an
analogy with KAM theory (see e.g. [3], and [8, 9] where it is used a graph representation
of the invariant tori in terms of Feynman diagrams).

Since the main focus of the paper is related to typical frequency vectors, we do not
present here concrete examples of the work of the m.c.f. algorithm. Such examples
are easy to construct only in the case of badly approximable α For the sake of trans-
parency we have restricted our attention to Diophantine vectors ω, which form a set
of full Lebesgue measure and are thus ‘typical.’ A more detailed analysis under weaker
Diophantine conditions is, in principle, possible within the present framework. It is
however a fundamental open problem to state a sharp (i.e. the weakest possible) Dio-
phantine condition under which the above conjugacy can be established. The answer
to this question is known only in the case d = 2, namely in the discrete-time situation
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for the Siegel problem [31] and for circle diffeormophisms [32], where the Diophantine
condition is of Brjuno type.

It would also be interesting to see whether the multidimensional continued fraction
algorithm presented here will allow generalizations of other one-dimensional renormal-
ization constructions. A concrete challenge is for instance the extension of the recent
results on the reducibility of cocycles over irrational rotations by Ávila and Krikorian
[2].

In the next section we introduce the multidimensional continued fraction algorithm,
and include a discussion of its hyperbolicity properties required in the renormalization
schemes. Section 3 provides a detailed account of one exemplary case, the renormaliza-
tion of vector fields.

2. Multidimensional continued fractions and flows on homogeneous
spaces

2.1. Flows on homogeneous spaces. Let us set G = SL(d,R) and Γ = SL(d,Z), and
define the diagonal subgroup {Et : t ∈ R} in G, where

Et = diag(er1t, . . . , erdt) (2.1)

with constants satisfying the conditions

r1, . . . , rd−1 < 0 < rd,

d∑
j=1

rj = 0. (2.2)

The right action of Et on the homogeneous space Γ\GΓ\G generates the flow

Φt : Γ\G→ Γ\G, ΓM 7→ ΓMEt. (2.3)

Since G is a simple Lie group with finite center, Φt is ergodic and mixing [27].
Let F ⊂ G be a fundamental domain of the left action of Γ on G. Recall that, by

definition of the fundamental domain of a free group action,
⋃
P∈Γ

PF = G, F ∩ PF = ∅ for all P ∈ Γ− {1}, (2.4)

and hence, for any given M ∈ G, there is a unique family of P (t) ∈ Γ such that

M(t) := P (t)MEt ∈ F (2.5)

holds for all t ∈ R.

2.2. A convenient parametrization. Let us consider those M ∈ G which can be
written as

M =

(
1 α
0 1

)(
A 0
>β γ

)
(2.6)

where A ∈ Matd−1(R) (the space of real (d − 1) × (d − 1) matrices), α,β ∈ Rd−1 are
column vectors, γ ∈ R with γ > 0. This yields a local parametrization of G for the set

G+ :=

{(
1 α
0 1

)(
A 0
>β γ

)
∈ G : A ∈ Matd−1(R), α,β ∈ Rd−1, γ ∈ R>0

}
, (2.7)

which is particularly convenient for our purposes. All other matrices are either of the
above form with γ < 0 instead, or may be written as

M = S

(
1 α
0 1

)(
A 0
>β γ

)
(2.8)

where S ∈ Γ is a suitably chosen “signed permutation matrix”, i.e., every row and every
column contains one and only one non-zero coefficient, which is either 1 or −1. In the
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following we will stay clear of the parameter singularity at γ = 0, and thus may assume
without loss of generality S = 1.

To work out the action of a general element T ∈ G in the above parametrization,
consider

T : M 7→ M̃ := TM (2.9)

where

T =

(
T11 t12
>t21 t22

)
, (2.10)

M is as above and

M̃ =

(
1 α̃
0 1

)(
Ã 0
>β̃ γ̃

)
. (2.11)

A short calculation yields the fractional linear action

α 7→ α̃ =
T11α + t12

>t21α + t22

, (2.12)

and

γ 7→ γ̃ = ( >t21α + t22)γ, (2.13)

and more complicated expressions for Ã, β̃ which will not be needed in the following.

2.3. Multidimensional continued fractions. Let t0 = 0 < t1 < t2 < . . . → ∞ be
sequence of times, with gaps

δtn := tn − tn−1 (2.14)

chosen large enough so that P (tn) 6= P (tn−1), where P (t) is defined by (2.5). The se-
quence P (n) := P (tn) of matrices in Γ may be viewed as the continued fraction approxi-
mants of the vector α, which are the best possible for suitable choices of a fundamental
domain F and times tn, see [21]. Let us furthermore put M (n) := M(tn) with M(t) as
in (2.5), and define α(n), γ(n) by the decomposition (2.6), i.e., by

M (n) =

(
1 α(n)

0 1

)(
A(n) 0
>β(n) γ(n)

)
. (2.15)

From M (n) = P (n)MEtn and (2.12), (2.13) we deduce

α(n) =
P

(n)
11 α + p

(n)
12

>p(n)
21 α + p

(n)
22

, (2.16)

and

γ(n) = ( >p(n)
21 α + p

(n)
22 ) erdtn γ (2.17)

where

P (n) =

(
P

(n)
11 p

(n)
12

>p(n)
21 p

(n)
22

)
. (2.18)

It is evident that if the components of ( >α, 1) are linearly independent over Q, then
γ 6= 0 implies γ(n) 6= 0 for all n ≥ 0.

We shall later employ the transfer matrices T (n) defined by P (n) = T (n)P (n−1). Here,
M (n) = T (n)M (n−1)Eδtn implies

α(n) =
T

(n)
11 α(n−1) + t

(n)
12

>t(n)
21 α(n−1) + t

(n)
22

, (2.19)

and

γ(n) = ( >t(n)
21 α(n−1) + t

(n)
22 ) erdδtn γ(n−1), (2.20)
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where

T (n) =

(
T

(n)
11 t

(n)
12

>t(n)
21 t

(n)
22

)
. (2.21)

2.4. Siegel sets. In dimensions d > 2 it is difficult to describe the geometry of a fun-
damental domain F . To overcome this problem, C. Siegel introduced simply connected
sets Sd ⊂ G which have the property that they contain F and are contained in a finite
number of translates PF , P ∈ Γ. Consider the Iwasawa decomposition

M = nak (2.22)

where

n =




1 u12 . . . u1d

. . . . . .
...

. . . ud−1,d

1


 , a =




a1

. . .
. . .

ad


 (2.23)

and k ∈ SO(d), with uij, aj ∈ R, aj > 0, a1 · · · ad = 1. Then

Sd = {nak : n ∈ FN , aj ≥
√

3

2
aj+1 > 0 (j = 1, . . . , d− 1), k ∈ SO(d)} (2.24)

is an example of a Siegel set [29]; here FN denotes a compact fundamental region of
(Γ ∩N)\N , where N is the upper triangular group of elements of the form n as above.

2.5. Dani’s correspondence. We assume from now on that r1, . . . , rd−1 = −1, rd =
d− 1, i.e.,

Et = diag(e−t, . . . , e−t, e(d−1)t). (2.25)

Let us denote by | · | the maximum norm in Rd−1. A vector α ∈ Rd−1 is called badly
approximable or of bounded type, if one of the following equivalent conditions is satisfied.

(i) There exists a constant C > 0 such that

|kα + m|d−1|k| > C (2.26)

for all m ∈ Zd−1, k ∈ Z− {0}.
(ii) There exists a constant C > 0 such that

|m|d−1|m ·α + k| > C (2.27)

for all m ∈ Zd−1 − {0}, k ∈ Z.

The statements (i) and (ii) are equivalent in view of Khintchine’s transference prin-
ciple ([4] Chapter V).

We recall Dani’s correspondence in the following proposition (cf. [5], Theorem 2.20).

Proposition 2.1. The orbit {ΓMEt : t ≥ 0}, with M as in (2.6), is bounded in Γ\G if
and only if the vector α is of bounded type.

The reason why the parameters A,β, γ are irrelevant in the statement is that the
family of matrices

W (t) = E−t

(
A 0
>β γ

)
Et (2.28)

is bounded in G for all t ≥ 0.
The boundedness of the orbit {ΓMEt : t ≥ 0} implies of course that there is a

compact set C ∈ G such that M(t) ∈ C for all t ≥ 0, with M(t) as in (2.5).
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2.6. Diophantine conditions. A vector α ∈ Rd−1 is called Diophantine, if there exist
constants ε > 0, C > 0 such that

|m|(d−1)(1+ε)|m ·α + k| > C (2.29)

for all m ∈ Zd−1 − {0}, k ∈ Z. It is well known that Diophantine vectors form a set of
full Lebesgue measure [4].

Let us show that (2.29) implies the inequality

‖k‖(d−1)(1+ε)|k · ω| > C, (2.30)

for all k ∈ Zd − {0}, where ω = ( α
1 ), cf. (1.6). With k = ( m

k ), (2.29) yields

|k · ω| > C|m|−(d−1)(1+ε) ≥ C|k|−(d−1)(1+ε) ≥ C‖k‖−(d−1)(1+ε) (2.31)

for all m ∈ Zd−1 − {0}, k ∈ Z. In the case when m = 0, we have k 6= 0 (since k 6= 0)
and thus (2.30) holds trivially.4 Note also that (2.30) evidently implies (2.29), however
with different choices for C in both inequalities.

Following [17] we define the following function on G,

δ(M) = inf
k∈Zd−{0}

| >kM |. (2.32)

It is easily checked that δ(M) is invariant under left action of Γ, and may thus be viewed
as a function on Γ\G. In terms of the Iwasawa parametrization (2.22) and the Siegel
set Sd defined in (2.24) we have the following estimate.

Lemma 2.2. For M = nak ∈ Sd as in (2.22), (2.24), there are constants 0 < C1 ≤ C2

such that for all 0 < ad ≤ 1

C1ad ≤ δ(M) ≤ C2ad. (2.33)

Proof. Since ‖x‖ ¿ |x| ¿ ‖x‖ for all x ∈ Rd, we may prove the statement of the
lemma for the function

δ̃d(M) = inf
k∈Zd−{0}

‖ >kM‖ (2.34)

instead.5 Due to the rotational invariance of the Euclidean distance we may assume
that k ∈ SO(d) is the identity.

Proof by induction. The statement trivially holds for d = 1. Therefore let us assume
the assertion is true for dimension d− 1. The jth coefficient of the vector >kM is

( >kM)j =

(
kj +

j−1∑
i=1

ki uij

)
aj. (2.35)

Since a1 → ∞ when ad → 0, this implies that when taking the infimum in (2.32) we
must take k1 = 0 for all sufficiently small ad. Thus we now need to estimate

inf
k̃∈Zd−1−{0}

max
2≤j≤d

∣∣∣∣
(
kj +

j−1∑
i=1

ki uij

)
aj

∣∣∣∣ = a
−1/(d−1)
1 inf

k̃∈Zd−1−{0}
max
2≤j≤d

∣∣∣∣
(
kj +

j−1∑
i=1

ki uij

)
ãj

∣∣∣∣
(2.36)

where >k̃ = (k2, . . . , kd), ãj = a
1/(d−1)
1 aj so that ã2 · · · ãd = 1. Now

inf
k̃∈Zd−1−{0}

max
2≤j≤d

∣∣∣∣
(
kj +

j−1∑
i=1

ki uij

)
ãj

∣∣∣∣ =: δd−1(M̃) ³ δ̃d−1(M̃) (2.37)

4Note that every admissible constant in (2.29) needs to satisfy C < 1/2; to see this, choose m =
(1, 0, . . . , 0), and k ∈ Z such that |α1 + k| ≤ 1/2.

5In the following, A ¿ B means ‘there is a constant C > 0 such that A ≤ CB’. If A ¿ B ¿ A we
will also use the notation A ³ B.
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where M̃ = ñã with

ñ =




1 u23 . . . u2d

. . . . . .
...

. . . ud−1,d

1


 , ã =




ã2

. . .
. . .

ãd


 . (2.38)

It is easily checked that M̃ ∈ Sd−1, so by the induction hypothesis, for suitable constants
0 < C1,d−1 ≤ C2,d−1, we have

C1,d−1 ãd ≤ δ̃d−1(M̃) ≤ C2,d−1 ãd, (2.39)

provided ãd = a
1/(d−1)
1 ad ≤ 1. So for ad sufficiently small and a

1/(d−1)
1 ad ≤ 1, we have

C1,d−1 ad ≤ δ̃d(M) ≤ C2,d−1 ad. (2.40)

In the remaining case ãd > 1, all ãj are bounded from above and below by positive

constants, and hence δ̃d−1(M̃) is bounded from above and below by positive constants.

Furthermore ãd > 1 implies a
−1/(d−1)
1 < ad, and, in view of our choice of the Siegel set,

a−1
1 = a2 · · · ad À ad−1

d . So

ad ¿ a
−1/(d−1)
1 < ad (2.41)

and the required bound follows from (2.36) also for the case ãd > 1. ¤

Lemma 2.3. Choose M as in (2.6) and suppose α satisfies condition (2.29). Then
there exists a constant C ′ > 0 such that for all t ≥ 0

δ(MEt) > C ′e−θt (2.42)

where

θ =
(d− 1)ε

d+ (d− 1)ε
. (2.43)

Proof. Let us put >k = ( >m, k) with m ∈ Zd−1 and k ∈ Z. Then

δ(MEt) = inf
(m,k)∈Zd−{0}

∣∣( >me−t, ( >mα + k)e(d−1)t
)
W (t)

∣∣

À inf
(m,k)∈Zd−{0}

|( >me−t, ( >mα + k)e(d−1)t)| (2.44)

since W (t), as defined in (2.28), is bounded in G for all t ≥ 0. Furthermore for t
sufficiently large

inf
(m,k)∈Zd−{0}

|( >me−t, ( >mα + k)e(d−1)t)| = inf
m∈Zd−1−{0}, k∈Z

|( >me−t, ( >mα + k)e(d−1)t)|
(2.45)

which, in view of the Diophantine condition (2.29), is bounded from below by

≥ inf
m∈Zd−1−{0}

|( >me−t, C|m|−(d−1)(1+ε)e(d−1)t)| = e−θt inf
m∈Zd−1−{0}

|( >x, C|x|−(d−1)(1+ε))|
(2.46)

where x = e(θ−1)tm. We conclude the proof by noting that

inf
m∈Zd−1−{0}

|( >x, C|x|−(d−1)(1+ε))| ≥ inf
y∈Rd−1−{0}

|( >y, C|y|−(d−1)(1+ε))| > 0. (2.47)

¤

The fact that ε = 0 implies θ = 0 is consistent with Dani’s correspondence. On the
other hand, θ < 1 for any ε <∞.
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2.7. Norm estimates. Let ‖ · ‖ denote the usual matrix norm

‖M‖ := sup
x6=0

‖Mx‖
‖x‖ . (2.48)

Proposition 2.4. Choose M = M (0) as in (2.6), and suppose α satisfies condition
(2.29). Then there are constants c1, c2, c3, c4, c5, c6 > 0 such that for all n ∈ N ∪ {0}

‖M (n)‖ ≤ c1 exp[(d− 1)θtn], (2.49)

‖M (n)−1‖ ≤ c2 exp(θtn), (2.50)

‖P (n)‖ ≤ c3 exp[(d θ + 1− θ)tn], (2.51)

‖P (n)−1‖ ≤ c4 exp[(d− 1 + θ)tn], (2.52)

‖T (n)‖ ≤ c5 exp[(1− θ)δtn + d θ tn], (2.53)

‖T (n)−1‖ ≤ c6 exp[(d− 1)(1− θ)δtn + d θ tn]. (2.54)

Proof. For any M ∈ Sd as in (2.22) we have, for all 0 < ad ≤ 1,

‖M‖ ¿ a1 = (a2 · · · ad)
−1 ¿ a

−(d−1)
d , (2.55)

and

‖M−1‖ ¿ a−1
d . (2.56)

Combine this with Lemmas 2.2 and 2.3 to obtain the bounds

‖M (n)−1‖ ¿ C2 δ(M
(n))−1 = C2 δ(M

(0)Etn)−1 < C2C
′−1

exp(θtn) (2.57)

and

‖M (n)‖ ¿ Cd−1
2 δ(M (n))−(d−1) = Cd−1

2 δ(M (0)Etn)−(d−1)

< Cd−1
2 C ′−(d−1)

exp[(d− 1)θtn]. (2.58)

The remaining estimates follow immediately from (2.49), (2.50) and the equations

P (n) = M (n)E−tnM (0)−1
, T (n) = M (n)E−δtnM (n−1)−1

. (2.59)

¤
Proposition 2.5. Choose M = M (0) as in (2.6), and suppose α satisfies condition
(2.29). Then there is a constant c7 > 0 such that for all n ∈ N ∪ {0},

c7 exp

[
− θ

(
d2

1− θ
− (d− 1)

)
tn

]
≤ |γ(n)| ≤ c1 exp[(d− 1)θtn] (2.60)

with c1 as in (2.49).

Proof. The upper bound for |γ(n)| follows from (2.49), since γ(n) = (M (n))dd and hence
|γ(n)| ≤ ‖M (n)‖.

From (2.17) and the Diophantine condition (2.29) we have

|γ(n)| = γ exp[(d− 1)tn]| >p(n)
21 α + p

(n)
22 )| > C exp[(d− 1)tn]|p(n)

21 |−(d−1)(1+ε). (2.61)

Since

1 + ε =
d− 1 + θ

(d− 1)(1− θ)
(2.62)

and

|p(n)
21 | ≤ ‖P (n)‖ (2.63)

the proposition follows from the estimate (2.51). ¤
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2.8. Hyperbolicity of the transfer matrices. Let

ω
(n)
⊥ = {ξ ∈ Rd : ξ · ω(n) = 0} (2.64)

be the orthogonal complement of the vector

ω(n) =

(
α(n)

1

)
∈ Rd. (2.65)

Lemma 2.6. For all ξ ∈ ω
(n−1)
⊥ , n ∈ N,

>T (n)−1
ξ = exp(−δtn) >

(
M (n−1)M (n)−1)

ξ (2.66)

Proof. This follows directly from the relation

Eδtn >M (n−1)ξ = exp(−δtn)

( >A(n−1)ξ′

0

)
= exp(−δtn) >M (n−1)ξ (2.67)

where ξ′ ∈ Rd−1 comprises the first d− 1 components of ξ. ¤
Proposition 2.7. Choose M = M (0) as in (2.6), and suppose α satisfies condition

(2.29). Then there is a constant Λ > 0 such that for all ξ ∈ ω
(n−1)
⊥ , n ∈ N,

‖ >T (n)−1
ξ‖ ≤ 1

2
Λ exp(−ϕn)‖ξ‖ (2.68)

with
ϕn = (1− θ)δtn − d θ tn−1. (2.69)

Proof. From Lemma 2.6,

‖ >T (n)−1
ξ‖ ≤ exp(−δtn)‖M (n−1)‖ ‖M (n)−1‖ ‖ξ‖, (2.70)

and the proposition follows from the bounds (2.49), (2.50). ¤
Given any positive sequence ϕ0, ϕ1, . . ., the values tn that solve eq. (2.69) with t0 = 0

are

tn =
1

1− θ

n∑
j=1

(1 + β)n−jϕj. (2.71)

where

β =
dθ

1− θ
. (2.72)

E.g., for constant ϕn = ϕ > 0, we have

tn =

{
nϕ (θ = 0)
ϕ
dθ

[(1 + β)n − 1] (0 < θ < 1).
(2.73)

2.9. The resonance cone. As we shall see, a crucial step in our renormalization
scheme is to eliminate all far-from-resonance modes in the Fourier series, i.e., all modes
labeled by integer vectors outside the cone

K(n) = {ξ ∈ Rd : |ξ · ω(n)| ≤ σn‖ξ‖} (2.74)

for a given σn > 0.

Lemma 2.8. Choose M = M (0) as in (2.6), and suppose α satisfies condition (2.29).
Then

sup
ξ∈K(n−1)−{0}

‖ >T (n)−1
ξ‖

‖ξ‖ ≤
[
Λ

2
+ c6σn−1e

d δtn

]
exp

[− (1− θ)δtn + d θ tn−1

]
, (2.75)

for all n ∈ N.
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Proof. We write ξ = ξ1 + ξ2, where

ξ1 =
ξ · ω(n−1)

‖ω(n−1)‖2
ω(n−1), ξ2 ∈ ω

(n−1)
⊥ . (2.76)

Firstly,

‖ >T (n)−1
ξ1‖ ≤ ‖ >T (n)−1‖ ‖ξ1‖ = ‖T (n)−1‖ |ξ · ω

(n−1)|
‖ω(n−1)‖ ≤ σn−1‖T (n)−1‖ ‖ξ‖ (2.77)

since ξ ∈ K(n−1) and ‖ω(n−1)‖ = ‖( >α(n−1), 1)‖ ≥ 1. Hence in view of (2.54)

‖ >T (n)−1
ξ1‖ ≤ c6σn−1 exp[(d− 1)(1− θ)δtn + d θ tn]‖ξ‖. (2.78)

Secondly, from Proposition 2.7 we infer

‖ >T (n)−1
ξ2‖ ≤

1

2
Λ exp

[− (1− θ)δtn + d θ tn−1

]‖ξ‖. (2.79)

This proves (2.75). ¤
Remark 2.1. Note that if the tn are chosen as in (2.73), and

σn−1 ≤ 1

2
c−1
6 Λ exp(−d δtn), (2.80)

then

‖ >T (n)−1
ξ‖ ≤ Λ exp(−ϕ)‖ξ‖ (2.81)

for all ξ ∈ K(n−1), n ∈ N and ϕ > 0.

3. Renormalization of vector fields

3.1. Definitions. The transformation of a vector field X on a manifold M by a diffeo-
morphism ψ : M →M is given by the pull-back of X under ψ:

ψ∗X = (Dψ)−1X ◦ ψ.
As the tangent bundle of the d-torus is trivial, TTd ' Td × Rd, we identify the set

of vector fields on Td with the set of functions from Td to Rd, that can be regarded
as maps of Rd by lifting to the universal cover. We will make use of the analyticity to
extend to the complex domain, so we will deal with complex analytic functions. We
will also be considering an extra variable related to a parameter.

Remark 3.1. We will be using maps between Banach spaces over C with a notion of
analyticity stated as follows (cf. e.g. [14]): a map F defined on a domain is analytic
if it is locally bounded and Gâteux differentiable. If it is analytic on a domain, it is
continuous and Fréchet differentiable. Moreover, we have a convergence theorem which
is going to be used later on. Let {Fk} be a sequence of functions analytic and uniformly
locally bounded on a domain D. If limk→+∞ Fk = F on D, then F is analytic on D.

Let ρ, a, b > 0, r = (a, b) and consider the domain Dρ × Br, where Dρ = {x ∈
Cd : ‖ Im x‖ < ρ/2π} for the norm ‖u‖ =

∑
i |ui| on Cd, and

Br =

{
y = (y1, . . . , yd) ∈ Cd :

d−1∑
i=1

|yi| < a and |yd| < b

}
. (3.1)

Take complex analytic functions f : Dρ × Br → Cd that are Zd-periodic on the first
coordinate and on the form of the Fourier series

f(x,y) =
∑

k∈Zd

fk(y)e2πik·x. (3.2)
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Its coefficients are analytic functions fk : Br → Cd with a continuous extension to the
closure Br, endowed with the sup-norm:

‖fk‖r = sup
y∈Br

‖fk(y)‖.

The Banach spaces Aρ,r and A′
ρ,r are the subspaces of such functions such that the

respective norms

‖f‖ρ,r =
∑

k∈Zd

‖fk‖r eρ‖k‖,

‖f‖′ρ,r =
∑

k∈Zd

(1 + 2π‖k‖) ‖fk‖r eρ‖k‖

are finite. Also, write the constant Fourier mode of f ∈ Aρ,r through the projection

Ef(y) =

∫

Td

f(x,y)dx = f0(y) (3.3)

into the projected space denoted by EAr. The norm of its derivative Df0 is given by
the operator norm ‖Df0‖r = sup‖g‖r=1 ‖Df0 g‖r.

Some of the properties of the above spaces are of easy verification. For instance, given
any f, g ∈ A′

ρ,r we have:

• ‖f(x,y)‖ ≤ ‖f‖ρ,r ≤ ‖f‖′ρ,r where (x,y) ∈ Dρ ×Br,
• ‖f‖ρ−δ,r ≤ ‖f‖ρ,r with δ < ρ.

In order to setup notations write, according to section 2, ω(0) = ω ∈ Rd−{0}, λ0 = 1
and, for n ∈ N,

ω(n) = γ(n)−1
M (n)

(
0
...
0
1

)
= λnP

(n)ω = ηnT
(n)ω(n−1), (3.4)

where

λn =
γ

γ(n)
e(d−1)tn and ηn =

λn

λn−1

. (3.5)

In the following, we will be interested in equilibria-free vector fields with a “twist”
along the parameter direction. By rescaling this direction we will find the right param-
eter which guarantees the conjugacy to a linear flow. For a fixed n ∈ N ∪ {0}, we will
be studying vector fields of the form

X(x,y) = X0
n(y) + f(x,y), (x,y) ∈ Dρ ×Br, (3.6)

where f ∈ Aρ,r and

X0
n(y) = ω(n) + γ(n)−1

M (n)y. (3.7)

(We drop the second coordinate of the vector field because it will always be equal to
zero – there is no dynamics along the parameter direction.) The linear transformation
on y deforms the set Br along the directions of the columns of M (n) (see (2.15)). In
particular, its dth column corresponds to ω(n).

For the space of the above vector fields we use the same notation Aρ,r and the same
norm ‖ · ‖ρ,r without ambiguity.

3.2. Resonance modes. Given σn > 0 we define the far from resonance Fourier modes
fk as in (3.2) with respect to ω(n) to be the ones whose indices k are in the cone

I−n = {k ∈ Zd : |k · ω(n)| > σn‖k‖}. (3.8)

Similarly, the resonant modes correspond to the cone

I+
n = Zd − I−n . (3.9)
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It is also useful to define the projections I+n and I−n on Aρ,r and A′
ρ,r by restricting

the Fourier modes to I+
n and I−n , respectively. The identity operator is I = I+n + I−n .

Moreover, take

An = sup
k∈I+

n −{0}

‖ >T (n+1)−1
k‖

‖k‖ . (3.10)

A useful property of the above cones is included in the Lemma below.

Lemma 3.2. If k ∈ I−n and y ∈ Brn with rn = (an, bn),

an ≤ σn

(
1

2
− bn

)
|γ(n)| ‖M (n)‖−1 and bn <

1

2
, (3.11)

then ∣∣k ·X0
n(y)

∣∣ > σn

2
‖k‖. (3.12)

Proof. For every y ∈ Brn and k ∈ I−n ,

|k · (ω(n) + γ(n)−1
M (n)y)| = |(1 + yd)k · ω(n) + γ(n)−1

k ·M (n)(y1, . . . , yd−1, 0)|
> (1− bn)σn‖k‖ − an |γ(n)|−1‖M (n)‖ ‖k‖.

(3.13)

Our choice of an yields (3.12). ¤

3.3. Basis change, time rescaling and reparametrization. The fundamental step
of the renormalization is a transformation of the domain of definition of our vector fields.
This is done by a linear change of basis (coming essentially from the multidimensional
continued fraction expansion of ω – see section 2), a linear rescaling of time because the
orbits take longer to cross the new torus, and a change of variables for the parameter y
in order to deal with the zero mode of the perturbation.

Let ρn−1, an−1, bn−1 > 0, rn−1 = (an−1, bn−1) and consider a vector field

X(x,y) = X0
n−1(y) + f(x,y), (x,y) ∈ Dρn−1 ×Brn−1 , (3.14)

with f ∈ Aρn−1,rn−1 . We are interested in the following coordinate and time linear
changes:

x 7→ T (n)−1
x, t 7→ ηnt. (3.15)

Notice that negative time rescalings are possible, meaning that we are inverting the
direction of time. In addition to (3.15) we will use a transformation on y, a map
y 7→ Φn(X)(y) depending on X in a way to be defined later.

Therefore, consider the transformation

Ln(x,y) = (T (n)−1
x,Φn(X)(y)), (x,y) ∈ C2d, (3.16)

that determines a vector field in the new coordinates as the image of the map

X 7→ Ln(X) = ηnL
∗
nX.

That is, for (x,y) ∈ L−1
n Dρn−1 ×Brn−1 ,

Ln(X)(x,y) = ηnT
(n)[ω(n−1) + γ(n−1)−1

M (n−1)Φn(X)(y) + f0 ◦ Φn(X)(y)]

+ ηnT
(n)(f − f0) ◦ Ln(x,y).

(3.17)

In order to eliminate the k = 0 mode of the perturbation of X in the new coordinates

and to normalise the linear term in y to γ(n)−1
M (n)y, using the definitions of T (n) and

ηn we choose

Φn(X) : y 7→
(
Id +γ(n−1)M (n−1)−1

f0

)−1

(e−dδtny1, . . . , e
−dδtnyd−1, yd), (3.18)
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if possible. Hence,

Ln(X)(x,y) = X0
n(x,y) + L̃n(f − f0)(x,y), (3.19)

where
L̃n : f 7→ ηnT

(n)f ◦ Ln. (3.20)

Denote by ∆µ the set of X ∈ Aρn−1,rn−1 such that ‖f0‖rn−1 < µ.

Lemma 3.3. Let rn = (an, bn) and µn−1 > 0 such that

an ≤ edδtn
[
an−1 −

(
1 + |γ(n−1)| ‖M (n−1)−1‖

)
µn−1

]

bn ≤ bn−1 −
(
1 + |γ(n−1)| ‖M (n−1)−1‖

)
µn−1.

(3.21)

There exist an analytic map Φn : ∆µn−1 → Diff(Brn ,Cd) such that, for each X ∈ ∆µn−1,
Φn(X) is given by (3.18) and

Φn(X)(Brn) ⊂ Brn−1 . (3.22)

In case f0 is real-analytic, Φn(X)|Rd is also real-valued.

Proof. For X ∈ Aρn−1,rn−1 with ‖f0‖rn−1 < µn−1 and δ̂n−1 = (δn−1, δn−1) with

δn−1 = µn−1|γ(n−1)| ‖M (n−1)−1‖, (3.23)

we have by the Cauchy estimate

‖Df0‖rn−1−bδn−1
≤ ‖f0‖rn−1

δn−1

<
1

|γ(n−1)| ‖M (n−1)−1‖ .

So, F = Id +γ(n−1)M (n−1)−1
f0 is a diffeomorphism on Brn−1−bδn−1

. Now, if R1 < an−1 −
δn−1 − µn−1, R2 < bn−1 − δn−1 − µn−1 and R = (R1, R2), we have BR ⊂ F (Brn−1−bδn−1

)

and F−1(BR) ⊂ Brn−1−bδn−1
. Therefore, Φn(X) as given by (3.18) is a diffeomorphism on

Brn by choosing R = (e−dδtnan, bn), and thus we get (3.22). In addition, X 7→ Φn(X) is
analytic from its dependence on f0. When restricted to a real domain for a real-analytic
f0, Φn(X) is also real-analytic. ¤

Let the translation Rz on C2d be defined for z ∈ Cd and given by

Rz : (x,y) 7→ (x + z,y). (3.24)

Notice that we have the following “commutative” relation:

L∗nR
∗
z = R∗T (n)zL

∗
n, z ∈ Cd. (3.25)

This also follows from the fact that Φn is unchanged by the introduction of the trans-
lation Rz.

3.4. Analyticity improvement.

Lemma 3.4. If δ > 0 and

ρ′n ≤
ρn−1

An−1

− δ, (3.26)

then L̃n as a map from (I+n−1 − E)Aρn−1,rn−1 ∩ ∆µn−1 into (I − E)A′
ρ′n,rn

is continuous
and compact with

‖L̃n‖ ≤ |ηn| ‖T (n)‖
(

1 +
2π

δ

)
. (3.27)

Remark 3.5. This result means that every vector field in I+n−1Aρn−1,rn−1 ∩ ∆µn−1 , i.e.

a function on Dρn−1 ×Brn−1 into Cd, has an analytic extension to T (n)−1
Dρ′n ×Brn−1 .
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Proof. Let f ∈ (I+n−1 − E)Aρn−1,rn−1 ∩∆µn−1 . Then,

‖f ◦ Ln‖′ρ′n,rn
≤

∑

k∈I+
n−1−{0}

(
1 + 2π‖ >T (n)−1

k‖
)
‖fk ◦Mn‖rne(ρ′n−δ+δ)‖>T (n)−1

k‖. (3.28)

By using the relation ξe−δ ξ ≤ δ−1 with ξ ≥ 0, (3.10) and (3.22), we get

‖f ◦ Ln‖′ρ′n,rn
≤ (1 + 2π/δ)

∑

I+
n−1−{0}

‖fk‖rn−1e
An−1(ρ′n+δ)‖k‖

≤ (1 + 2π/δ) ‖f‖ρn−1,rn−1 .

(3.29)

Finally, ‖L̃nf‖′ρ′n,rn
≤ |ηn| ‖T (n)‖ ‖f ◦ Ln‖′ρ′n,rn

.
The above for Dρ′n × Brn is also valid for Dζ × Brn , ζ > ρ′n but satisfying a similar

inequality to (3.26). Therefore, L̃n = I ◦ J , where J : (I+n−1 − E)Aρn−1,rn−1 → A′
ζ,rn

is

bounded as L̃n, and the inclusion map I : A′
ζ,rn

→ A′
ρ′n,rn

is compact. ¤

For 0 < ρ′′n ≤ ρ′n, consider the inclusion

In : A′
ρ′n,rn

→ A′
ρ′′n,rn

(3.30)

by restricting X ∈ A′
ρ′n,rn

to the smaller domain Dρ′′n × Brn . When restricted to non-
constant modes, its norm can be estimated as follows.

Lemma 3.6. If φn ≥ 1 and

0 < ρ′′n ≤ ρ′n − log(φn), (3.31)

then

‖In(I− E)‖ ≤ φ−1
n . (3.32)

Proof. For f ∈ (I− E)A′
ρ′n,rn

, we have

‖In(f)‖′ρ′′n,rn
≤

∑

k 6=0

(1 + 2π‖k‖)‖fk‖rneρ′n‖k‖φ−‖k‖n ≤ φ−1
n ‖f‖′ρ′n,rn

. (3.33)

¤

3.5. Elimination of far from resonance modes. The theorem below (to be proven
in Section A) states the existence of a nonlinear change of coordinates U , isotopic to the
identity, that cancels the I−n modes of any X as in (3.6) with sufficiently small f . We
are eliminating only the far from resonance modes, this way avoiding the complications
usually related to small divisors. We remark that the “parameter” direction y is not
affected by this change of coordinates.

For given ρn, rn, ε, ν > 0, denote by Vε the open ball in A′
ρn+ν,rn

centred at X0
n with

radius ε.

Theorem 3.7. Let rn be as in (3.11), σn < ‖ω(n)‖ and

εn =
σn

42
min

{
ν

4π
,

σn

72‖ω(n)‖
}
. (3.34)

For all X ∈ Vεn there exists an isotopy

Ut : Dρn ×Brn → Dρn+ν ×Brn ,

(x,y) 7→ (x + ut(x,y),y),
(3.35)

of analytic diffeomorphisms with ut in A′
ρn,rn

, t ∈ [0, 1], satisfying

I−nU∗t X = (1− t) I−nX, U0 = Id . (3.36)
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This defines the maps

Ut : Vεn → A′
ρn,rn

X 7→ Id +ut
(3.37)

and

Ut : Vεn → I+Aρn,rn ⊕ (1− t)I−nA′
ρn+ν,rn

X 7→ U∗t X
(3.38)

which are analytic, and satisfy the inequalities

‖Ut(X)− Id ‖′ρn,rn
≤42t

σn

‖I−n f‖ρn,rn

‖Ut(X)−X0
n‖ρn,rn ≤(3− t)‖f‖′ρn+ν,rn

.
(3.39)

If X is real-analytic, then Ut(X)(R2d) ⊂ R2d.

Remark 3.8. Further on we will be using the above result for t = 1. So that all far
from resonance modes are eliminated.

Recall the definition of the translation Rz in (3.24).

Lemma 3.9. In the conditions of Theorem 3.7, if x ∈ Rd and X ∈ Vεn, then

Ut(X ◦Rx) = R−1
x ◦ Ut(X) ◦Rx (3.40)

on Dρn,rn.

Proof. Notice that Rx(Dρn × Brn) = Dρn × Brn . If Ut = Ut(X) is a solution of the

homotopy equation (3.36) on Dρn × Brn , then Ũt = R−1
x ◦ Ut(X) ◦ Rx solves the same

equation for X̃ = X ◦Rx, i.e. I−n X̃ ◦ Ũt = (1− t)I−n X̃, on Dρn ×Brn . ¤
3.6. Trivial limit of renormalization. Let a sequence of “widths” 0 < σn < 1 of the
resonance cones I+

n be given. The nth step renormalization operator is thus

Rn = Un ◦ In ◦ Ln ◦ Rn−1 and R0 = U0,

where Un is the full elimination of the modes in I−n as in Theorem 3.7 (for t = 1). Notice
that Rn(X0 + v) = X0

n, for every v ∈ Cd. From the previous sections the map Rn on
its domain is analytic. Also, in case a vector field X is real-analytic, the same is true
for Rn(X).

Fix the constants ν and δ as in Theorem 3.7 and Lemma 3.4, respectively, and choose
0 < λ < 1. Take

Θn = min



εn,

λnσ2
n∏n

i=1 ‖T (i)−1‖2
, λn

σn|γ(n)|
‖M(n)‖ −

σn+1|γ(n+1)|
edδtn+1‖M(n+1)‖

1 + |γ(n)| ‖M (n)−1‖



 (3.41)

by assuming that the sequence of times tn guarantees that Θn > 0. Now, write

Bn =
n∏

i=0

Ai. (3.42)

with Ai given by (3.10). By recalling the inequalities (3.26) and (3.31) we choose, for a
given ρ0 > 0,

ρn =
1

Bn−1

[
ρ0 −

n−1∑
i=0

Bi log (φi+1)− (δ + ν)
n−1∑
i=0

Bi

]
, (3.43)

where

φn = max

{
2|ηn| ‖T (n)‖(1 + 2πδ−1)

Θn−1

Θn

, 1

}
≥ 1 (3.44)
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is to be used in Lemma 3.6.
Define the following function for every ω ∈ Rd associated to the choice of σn:

B(ω) =
+∞∑
i=0

Bi log (φi+1) + (δ + ν)
+∞∑
i=0

Bi. (3.45)

The convergence of the renormalization scheme now follows directly from our con-
struction.

Theorem 3.10. Suppose that

B(ω) < +∞ (3.46)

and ρ > B(ω) + ν. There is K, b > 0 and rn = (an, bn) with an > 0 and bn > b > 0,
such that if X is in a sufficiently small open ball around X0 in Aρ,r0, then

(i) X is in the domain of Rn and

‖Rn(X)−Rn(X0)‖ρn,rn ≤ KΘn‖X −X0‖ρ,r0 , n ∈ N ∪ {0}, (3.47)

(ii) for each |s| < b there exists in Brn−1 ⊂ Cd the limits

ps
n(X) = lim

m→+∞
Φn(Rn−1(X)) . . .Φm(Rm−1(X))(0, . . . , 0, s) (3.48)

and

lim
n→+∞

‖ps
n(X)− (0, . . . , 0, s)‖ = 0, (3.49)

(iii) the map X 7→ pn(X) is analytic and takes any real-analytic X into an analytic
curve s 7→ ps

n(X) in Rd.

Proof. Let ξ > 0 and ρ0 = ρ − ν − ξ > 0 such that ρ0 > B(ω). Hence, by (3.43), we
have R > 0 satisfying ρn > RB−1

n−1 for all n ∈ N.
Denote by c the radius of an open ball in Aρ,r0 centred at X0 and containing X. If

c ≤ ε0 we can use Theorem 3.7 to obtain R0(X) ∈ I+0 Aρ0,r0 with r0 = (a0, b0) satisfying
(3.11) and

‖R0(X)−R0(X
0)‖ρ0,r0 ≤ 2‖X −X0‖′ρ+ξ,r0

≤ 2ξ−1‖X −X0‖ρ,r0 .

Let K = 2(ξΘ0)
−1 and assume that c ≤ K−1 min{b0(1 − λ), 1

2
− b0}. So, (3.47) holds

for n = 0.
Now, with n ∈ N we choose the following rn:

an = σn

(
1

2
− b0

) |γ(n)|
‖M (n)‖ and bn = b0 − cK

n−1∑
i=0

λi, (3.50)

so that 1/2 > bn > b = b0− cK(1−λ)−1. The inequalities in (3.11) follow immediately.
Moreover, (3.21) is also satisfied with µn−1 = cKΘn−1 because

an−1 − e−dδtnan ≥ (
1

2
− b0)(1 + |γ(n−1)| ‖M (n−1)−1‖)Θn−1

≥ (1 + |γ(n−1)| ‖M (n−1)−1‖)cKΘn−1,

bn−1 − bn = cKλn−1

≥ (1 + |γ(n−1)| ‖M (n−1)−1‖)cKΘn−1.

(3.51)

Suppose that Xn−1 = Rn−1(X) ∈ I+n−1Aρn−1,rn−1 and

‖Xn−1 −X0
n−1‖ρn−1,rn−1 ≤ KΘn−1‖X −X0‖ρ,r.
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Since (3.21) holds, Lemmas 3.3 and 3.4 are valid and, together with (3.19) and Lemma
3.6, can be used to estimate In ◦ Ln(Xn−1):

‖In ◦ Ln(Xn−1)−X0
n‖′ρ′′n,rn

≤ |ηn| ‖T (n)‖(1 + 2πδ−1)φ−1
n KΘn−1‖X −X0‖ρ,r0

=
1

2
KΘn‖X −X0‖ρ,r0 .

(3.52)

This vector field is inside the domain of Un as (3.11) and 1
2
cKΘn < εn are satisfied.

Thus (3.47) follows from (3.39).

Denote by f
(n)
0 the constant mode of the perturbation term of Xn. By Lemma 3.3,

Φn(Xn−1) : Brn → Brn−1 is given by

y 7→ (Id +gn) diag(e−dδtn , . . . , e−dδtn , 1)y,

where

gn =
(
Id +γ(n−1)M (n−1)−1

f
(n−1)
0

)−1

− Id (3.53)

is defined on Br′n with r′n = (e−dδtnan, bn). So, for z ∈ Br′n there is ξ ∈ Br′n such that

gn(z) = [I + γ(n−1)M (n−1)−1
Df

(n−1)
0 (ξ)]−1[z − γ(n−1)M (n−1)−1

f
(n−1)
0 (0)]− z

= −[I + γ(n−1)M (n−1)−1
Df

(n−1)
0 (ξ)]−1γ(n−1)M (n−1)−1

[Df
(n−1)
0 (ξ) z + f

(n−1)
0 (0)]

(3.54)

and

‖gn‖r′n ≤
|γ(n−1)| ‖M (n−1)−1‖

1− |γ(n−1)|‖M (n−1)−1‖ ‖Df (n−1)
0 ‖r′n

(
‖r′n‖ ‖Df (n−1)

0 ‖r′n + ‖f (n−1)
0 ‖r′n

)
.

(3.55)

The choice of rn means that

min{an−1 − e−dδtnan, bn−1 − bn} À min

{
σn−1|γ(n−1)|
‖M (n−1)‖ , λn−1

}
. (3.56)

By using (3.41) and the Cauchy estimate,

‖Df (n−1)
0 ‖r′n ≤

‖f (n−1)
0 ‖rn−1

min{an−1 − e−dδtnan, bn−1 − bn} ¿
λn−1

|γ(n−1)| ‖M (n−1)−1‖ (3.57)

Thus,

‖gn‖r′n ¿ λn−1. (3.58)

Writing ys = (0, . . . , 0, s), by induction we have

Φn(Xn−1) . . .Φm(Xm−1)(ys) = ys +
m∑

i=n

diag(e−d(ti−1−tn−1), . . . , e−d(ti−1−tn−1), 1)gi(ξi),

(3.59)
for some ξk ∈ Br′k . Therefore, from (3.58), there exists ps

n(X) ∈ Cd unless X is real

which clearly gives ps
n(X) ∈ Rd. In addition,

‖ps
n(X)− ys‖ ≤

+∞∑
i=n

‖gi‖r′i ¿
λn−1

1− λ
. (3.60)

The maps X 7→ ps
n(X) are analytic since the convergence is uniform. Lemma 3.3

gives us the nested sequence Φn(Xn−1)(Brn) ⊂ Brn−1 . So, as ys ∈ ∩i∈NBri
, it follows

that ps
n(X) ∈ Brn−1 . ¤
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Remark 3.11. The above can be generalised for a small analyticity radius ρ by consider-

ing a sufficiently large N and applying the above theorem to X̃ = UNLN . . .U1L1U0(X),
where X is close enough to X0. We recover the large strip case since ρN is of the order
of B−1

N−1. It remains to check that ρN > B(ω(N)) + ν. This follows from the fact that

B(ω(N)) = B−1
N−1[B(ω)− BN(ω)] where BN(ω) is the sum of the first N terms of B(ω)

so that BN(ω) → B(ω) as N → +∞.

Lemma 3.12. If ω = ( α
1 ) in Rd is diophantine, i.e. α satisfies (2.29) with exponent ε

(related to θ by (2.43) and to β by (2.72)), then (3.46) is verified.

Proof. Let us set δtn = ξtn−1, σn = exp(−cδtn), n ≥ 1, where positive constants ξ, c
will be chosen later. Obviously, tn = (1+ ξ)tn−1 = [(1+ ξ)/ξ]δtn and δtn = (1+ ξ)δtn−1.
We shall assume that

c < d(1 + ξ), (3.61)

so that σn−1 exp(dδtn) = exp(−cδtn−1 + dδtn) = exp[(d − c/(1 + ξ))δtn] is much larger
than Λ given by Proposition 2.7. Hence, using (2.75) we have

An−1 ¿ exp

[(
− c

1 + ξ
+ d− (1− θ) +

dθ

ξ

)
δtn

]
. (3.62)

We next estimate ‖ω(n)‖ and εn. It follows from (3.4) that ‖ω(n)‖ ¿ ‖M (n)‖ |γ(n)−1|.
Thus, using (2.49), (2.60) we have

‖ω(n)‖ ¿ exp

(
θ

1− θ
d2tn

)
= exp

(
θ

1− θ
d2 1 + ξ

ξ
δtn

)
. (3.63)

Since ‖ω(n)‖ ≥ 1 one gets from (3.34) that εn ∼ σ2
n/‖ω(n)‖ which together with (3.63)

implies

exp

[(
−2c− θ

1− θ
d2 1 + ξ

ξ

)
δtn

]
¿ εn ¿ exp(−2cδtn). (3.64)

Here X ∼ Y means that there exist two positive constants C1, C2 > 0 such that C1Y <
X < C2Y . Using again (2.49), (2.60) we get

σn|γ(n)|
‖M (n)‖ À exp

[(
−c− θ

1− θ
d2 1 + ξ

ξ

)
δtn

]
. (3.65)

Also, since ‖M (n+1)‖ ≥ γ(n+1),

σn+1|γ(n+1)|
‖M (n+1)‖ exp(dδtn+1)

¿ exp[−(c+ d)(1 + ξ)δtn]. (3.66)

We shall assume that c and ξ are chosen in such a way that

−c− θ

1− θ
d2 1 + ξ

ξ
> −(c+ d)(1 + ξ), (3.67)

so that
σn|γ(n)|
‖M (n)‖ −

σn+1|γ(n+1)|
‖M (n+1)‖ exp(dtn+1)

À σn|γ(n)|
‖M (n)‖ . (3.68)

Inequality (3.67) is equivalent to the following condition

c >
θ

1− θ

1 + ξ

ξ2
d2 − 1 + ξ

ξ
d. (3.69)

Finally, we want An to be small and, hence, require the exponent in (3.62) to be
negative

− c

1 + ξ
+ d− (1− θ) +

dθ

ξ
< 0. (3.70)
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Suppose that conditions (3.61), (3.69), (3.70) are satisfied. It follows immediately
from the estimates above and (3.5), (2.49), (2.50), (2.54), (2.60) that

| log Θn|, | log Θn−1|, log ‖T (n)‖, | log |ηn|| ¿ δtn. (3.71)

At the same time

Bn =
n∏

i=0

Ai ¿ Cn exp(−αtn+1), (3.72)

where

α =
c

1 + ξ
− d+ (1− θ)− dθ

ξ
> 0. (3.73)

Since Bn decays exponentially with tn and log φn grows at most linearly the series (3.46)
converges. To finish the proof it is enough to show that conditions (3.61), (3.69), (3.70)
can be satisfied. Indeed, since 0 < θ < 1 we can choose ξ so large that 1− θ− dθ/ξ > 0
and

θ

1− θ

1 + ξ

ξ2
d2 − 1 + ξ

ξ
d < 0. (3.74)

It is easy to see that all three inequalities (3.61), (3.69), (3.70) are satisfied if (1+ξ)(d−
β) < c < (1 + ξ)d, where β = 1− θ − dθ/ξ > 0. ¤

3.7. Analytic conjugacy to linear flow. As a consequence of Theorem 3.10, we
obtain an analytic conjugacy between a vector field and the linear flow, thus proving
Theorem 1.1. In the following we always assume to be in the conditions of Section 3.6.

Let r = r0 and

∆ = {X ∈ Aρ,r : ‖X −X0‖ρ,r < c} (3.75)

inside the domain of Rn for all n ∈ N ∪ {0}. By taking X ∈ ∆, we denote Xn =
Rn(X) ∈ I+nAρn,rn so that

Xn = λn (U0 ◦ L1 ◦ U1 · · ·Ln ◦ Un)∗(X), (3.76)

where Uk = Uk(IkLk(Xk−1)) is given by Theorem 3.7 for t = 1 at the kth step and Lk

is the linear rescaling as in (3.16) for Xk−1.
Denote by Vn the coordinate change

Vn : (x,y) 7→ (P (n)−1
x,Φ1(X0) . . .Φn(Xn−1)(y)) (3.77)

and set V0 = Id. Thus, Ln = V −1
n−1 ◦ Vn and

Xn = λn (Vn ◦ Un)∗(Vn−1 ◦ Un−1 ◦ V −1
n−1)

∗ · · · (V1 ◦ U1 ◦ V −1
1 )∗U∗0 (X). (3.78)

In particular, the y-coordinate is only transformed by the second component of Vn.
Notice that if Xn = X0

n for some n ∈ N,

y = Φ1(X0) . . .Φn(Xn−1)(0, . . . , 0, s) ∈ Cd,

with |s| < b, corresponds to the parameter for which X is conjugated to (1 + s) ω(n).
The parameter value for the general case Xn −X0

n → 0 as n→ +∞ is ps(X) = ps
1(X).

Lemma 3.13. There is an open ball B about X0 in ∆ such that we can find a sequence
Rn > 0 satisfying R−1 = ρ,

Rn + 2π42KΘ1/2
n ‖X −X0‖ρ,r ≤ Rn−1 ≤ ρn−1

‖P (n−1)‖ , X ∈ B, (3.79)

and

lim
n→+∞

R−1
n Θ1/2

n = 0. (3.80)
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Proof. Let ρ∗ = min ρn. It is enough to check that Θ
1/2
n ¿ λnρ∗

∏n
i=1 ‖T (i)‖−1 with

0 < λ < 1 and taking Rn = cλ−nΘ
1/2
n for some positive constant c. This immediately

implies (3.80) and (3.79) by considering a small enough upper bound for ‖X−X0‖ρ,r. ¤
Let Diffper(Dζ ,Cd), ζ > 0, be the Banach space of Zd-periodic diffeomorphisms

g : Dζ → Cd with finite norm ‖g‖ζ =
∑

k ‖gk‖eζ‖k‖, where gk ∈ Cd are the coefficients
of the Fourier representation. It is simple to check that ‖g ◦ P (n)‖Rn ≤ ‖g‖ρn .

Denote by un the analytic function

un : ∆ → Diffper(Dρn ,Cd)

X 7→ Un(InLn(Xn−1))(·, ps
n+1(X)).

(3.81)

As ps
n+1(X) ∈ Brn , Dρn×{y = ps

n+1(X)} is inside the domain Dρn,rn of Un(InLn(Xn−1))
given in Theorem 3.7. Now, for each X, define the isotopic to the identity diffeomor-
phism

Wn(X) = P (n)−1 ◦ un(X) ◦ P (n), (3.82)

on P (n)−1
Dρn . If X is real-analytic, then Wn(X)(Rd) ⊂ Rd, since this property holds

for un(X). We also have Wn(X0) = Id.

Lemma 3.14. For all n ∈ N ∪ {0}, Wn : B → Diffper(DRn ,Cd) is analytic satisfying
Wn(X) : DRn → DRn−1 and

‖Wn(X)− Id ‖Rn ≤ 42KΘ1/2
n ‖X −X0‖ρ,r, X ∈ B. (3.83)

Proof. For any X ∈ ∆, in view of (3.39) we get

‖Wn(X)− Id ‖Rn = ‖P (n)−1 ◦ [un(X)− Id] ◦ P (n)‖Rn

≤ 42

σn

‖P (n)−1‖ ‖InLn(Xn−1)−X0
n‖ρn,rn .

We can bound the above by (3.83).
Now, for x ∈ DRn and X ∈ B ⊂ ∆,

‖ ImWn(X)(x)‖ ≤ ‖ Im(Wn(X)(x)− x)‖+ ‖ Im x‖
< ‖Wn(X)− Id ‖Rn +Rn/2π ≤ Rn−1/2π.

So we have Wn(X) : DRn → DRn−1 and Wn(X) ∈ Diffper(DRn ,Cd). From the properties
of Un, Wn is analytic as a map from B into Diffper(DRn ,Cd). ¤

Consider the analytic mapHn : B → Diffper(DRn ,Cd) defined by the coordinate trans-
formation Hn(X) : DRn → Dρ0 as

Hn(X) = W0(X) ◦ · · · ◦Wn(X). (3.84)

Lemma 3.15. There exists c > 0 such that for X ∈ B and n ∈ N,

‖Hn(X)−Hn−1(X)‖Rn ≤ cΘ1/2
n ‖X −X0‖ρ,r. (3.85)

Proof. For each k = 0, . . . , n− 1, consider the transformations

Gk(z,X) =(Wk(X)− Id) ◦ (Id +Gk+1(z,X)) +Gk+1(z,X),

Gn(z,X) =z(Wn(X)− Id),

with (z,X) ∈ {z ∈ C : |z| < 1 + dn} ×B, where we have c′ > 0 such that

dn =
c′

Θ
1/2
n ‖X −X0‖ρ,r

− 1 > 0.

If the image of DRn under Id +Gk+1(z,X) is inside the domain of Wk(X), or simply

‖Gk+1(z,X)‖Rn ≤ (Rk −Rn)/2π,



24 K. KHANIN, J. LOPES DIAS, AND J. MARKLOF

then Gk is well-defined as an analytic map into Diffper(DRn ,Cd), and

‖Gk(z,X)‖Rn ≤ ‖Wk(X)− Id ‖Rk
+ ‖Gk+1(z,X)‖Rn .

An inductive scheme shows that

‖Gn(z,X)‖Rn ≤(Rn−1 −Rn)/2π,

‖Gk(z,X)‖Rn ≤
n−1∑

i=k

‖Wi(X)− Id ‖Ri
+ |z| ‖Wn(X)− Id ‖Rn

≤(Rk−1 −Rn)/2π.

By Cauchy’s formula

‖Hn(X)−Hn−1(X)‖Rn = ‖G0(1, X)−G0(0, X)‖Rn

=

∥∥∥∥
1

2πi

∮

|z|=1+dn/2

G0(z,X)

z(z − 1)
dz

∥∥∥∥
Rn

,

and

‖Hn(X)−Hn−1(X)‖Rn ≤
2

dn

sup
|z|=1+dn/2

‖G0(z,X)‖Rn

¿ Θ1/2
n ‖X −X0‖ρ,r.

¤
Consider C1

per(Rd,Cd) to be the Banach space of the Zd-periodic C1 functions between

Rd and Cd with norm

‖f‖C1 = max
k≤1

max
x∈Rd

‖Dkf(x)‖. (3.86)

Lemma 3.16. There exists C > 0, an open ball B′ ⊂ B about X0 and an analytic map
H : B′ → Diffper(Rd,Cd) such that for X ∈ B′, H(X) = limn→+∞Hn(X) and

‖H(X)− Id ‖C1 ≤ C‖X −X0‖ρ,r. (3.87)

If X ∈ B′ is real-analytic, then H(X) ∈ Diffper(Rd,Rd).

Proof. As the domains DRn are shrinking, we consider the restrictions of Wn(X) and
Hn(X) to Rd, and estimate their C1 norms from the respective norms in Diffper(DRn ,Cd).
More precisely, for any X ∈ B, making use of Lemma 3.15,

‖Hn(X)−Hn−1(X)‖C1 ≤ max
k≤1

sup
x∈DRn/2

‖Dk[Hn(X)(x)−Hn−1(X)(x)]‖

≤ 4

Rn

‖Hn(X)−Hn−1(X)‖Rn ,
(3.88)

which goes to zero by (3.80). Notice that here we have used Cauchy’s estimate ‖D1g‖ζ ≤
(2π/eδ)‖g‖ζ+δ with ζ, δ > 0.

Therefore, it is shown the existence of the limit Hn(X) → H(X) as n→ +∞, in the
Banach space C1

per(Rd,Cd). Moreover, ‖H(X)−Id ‖C1 ¿ ‖X−X0‖ρ,r. The convergence
of Hn is uniform in B so H is analytic. As the space of close to identity diffeomorphisms
is closed for the C1 norm, H(X) is a diffeomorphism for any X sufficiently close to X0,
i.e. X ∈ B′. The fact that, for real-analytic X, H(X) takes real values for real
arguments, follows from the same property of each Wn(X). ¤

To simplify notation, write πyX = X(·,y).

Lemma 3.17. For every real-analytic X ∈ B′ and |s| < b, [H(X)]∗(πps(X)X) = (1+s) ω
on Rd.
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Proof. For each n ∈ N the definition of Hn(X) and (3.78) imply that

Hn(X)∗(πps(X)X) = λ−1
n πps(X)V

−1
n

∗
(Xn). (3.89)

The r.h.s. can be written as

λ−1
n P (n)−1

[ω(n)+γ(n)−1
M (n)Φn(Xn−1)

−1 · · ·Φ1(X0)
−1ps(X)]+λ−1

n πps(X)V
−1
n

∗
(Xn−X0

n) =

= (1 + s) ω + λ−1
n P (n)−1

γ(n)−1
M (n)ps

n+1(X)− sω + λ−1
n πps(X)V

−1
n

∗
(Xn −X0

n). (3.90)

Its terms can be estimated, for x ∈ Rd, by

‖λ−1
n πps(X)V

−1
n

∗
(Xn −X0

n)(x)‖ ≤ |λ−1
n | ‖P (n)−1‖ ‖Xn −X0

n‖ρn,rn ¿ Θ1/2
n , (3.91)

and

1

|λnγ(n)|‖P
(n)−1

M (n)[ps
n+1(X)− (0, . . . , 0, s)]‖ =

‖M (0)‖
|γ|e(d−1)tn

‖Etn [ps
n+1(X)− (0, . . . , 0, s)]‖

¿ ‖ps
n+1(X)− (0, . . . , 0, s)‖

(3.92)

which is controlled by (3.49). Consequently, the limit of (3.89) as n→ +∞ is (1+ s) ω.
Using the convergence of Hn we complete the proof. ¤
Lemma 3.18. If X ∈ B′ and x ∈ Rd, then

H(X ◦Rx) = R̂−1
x ◦H(X) ◦ R̂x, (3.93)

where R̂x : z 7→ z + x is a translation on Cd.

Proof. For each n ∈ N, (3.40) and (3.25) yield that Un(X ◦ Rx) = Un(X) ◦ Rx and
Ln(X ◦Rx) = Ln(X) ◦RT (n)x. This implies immediately that

Rn(X ◦Rx) = Rn(X) ◦RP (n)x. (3.94)

Next, from a simple adaptation of (3.40) and the formula R̂P (n)z = P (n)R̂zP
(n)−1

for
z ∈ Cd, we get

Wn(X ◦Rx) =P (n)−1 ◦ Uan(LnRn−1(X ◦Rx)) ◦ P (n)

=R̂−1
x ◦Wn(X) ◦ R̂x.

(3.95)

Thus, Hn(X ◦Rx) = R̂−1
x ◦Hn(X) ◦ R̂x. The convergence of Hn implies (3.93). ¤

Theorem 3.19. If v ∈ Vectω(Td) is sufficiently close to ω, then there exists an analytic
curve p : (−b, b) → Rd, s 7→ ps, and h ∈ Diffω(Td) homotopic to the identity such that

h∗(v + ps) = (1 + s)ω. (3.96)

The maps v 7→ p and v 7→ h are analytic.

Proof. The lift ṽ to Rd of v is assumed to have an analytic extension in Dρ. Consider the
real-analytic vector field Y (x,y) = ṽ(x) + y in Aρ,r. Suppose that v is close enough to
ω such that Y ∈ B′ and Y ◦Rz ∈ B′ for some η > 0 and z ∈ Dη. Then, the parameter
ps = ps(Y ) ∈ Rd and the C1-diffeomorphism h = H(Y ) mod 1 verify (3.96).

We now want to extend h analytically to a complex neighbourhood of its domain.

Take h̃(z) = z + H(Y ◦ Rz)(0), z ∈ Dη. The maps z 7→ Y ◦ Rz and X 7→ H(X) are

analytic and C1
per(Rd,Cd) 3 g 7→ g(0) is bounded. As h̃ involves their composition, it is

analytic on the domain Dη and Zd-periodic. From (3.93), for any x ∈ Rd, we have

h̃(x) mod 1 = (x + R̂−1
x ◦H(Y ) ◦ R̂x(0)) mod 1

= (x +H(Y )(x)− x) mod 1

= h(x).

(3.97)
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The extension of h is a complex analytic diffeomorphism, thus h is a real-analytic
diffeomorphism. ¤

Appendix A. Homotopy method for vector fields

In this section we prove Theorem 3.7 using the homotopy method (cf. [22]). As n is
fixed, we will drop it from our notations. In addition we write ρ′ = ρn and ρ = ρn + ν.
We will be using the symbol Dx for the derivative with respect to x.

Firstly, we include a technical lemma that will be used in the following.

Lemma A.1. Let f ∈ A′
ρ,r. If U = Id +(u, 0) where u : Dρ′ ×Br → D(ρ−ρ′)/2 is in Aρ′,r

and ‖u‖ρ′,r < (ρ− ρ′)/4π, then

• ‖f ◦ U‖ρ′,r ≤ ‖f‖(ρ+ρ′)/2,r,
• ‖Dxf ◦ U‖ ≤ ‖f‖′(ρ+ρ′)/2,r,

• ‖f ◦ U − f‖ρ′,r ≤ ‖f‖′(ρ+ρ′)/2,r ‖u‖ρ′,r,

• ‖Dxf ◦ U −Dxf‖ ≤ 4π
ρ−ρ′‖f‖′ρ,r ‖u‖ρ′,r.

The proof of these inequalities is straightforward and thus will be omitted. Now,
assume that δ = 42ε/σ < 1/2. For vector fields in the form X = ω + π2 + f , where
π2 : (x,y) 7→ y is seen as a function in A′

ρ,r, consider f to be in the open ball in A′
ρ,r

centred at the origin with radius ε. The coordinate transformation U is written as
U = Id +(u, 0), with u in

B =
{
u ∈ I−A′

ρ′,r : u : Dρ′ ×Br → Dρ, ‖u‖′ρ′,r < δ
}
.

Notice that we have

I−U∗(X) = I−(DU)−1(ω + π2 + f ◦ U, 0)

= (I−(I +Dxu)
−1(ω + π2 + f ◦ U), 0).

From now on the parameter r is omitted whenever there is no ambiguity. Define the
operator F : B → I−Aρ′ ,

F (u) = I−(I +Dxu)
−1(ω + π2 + f ◦ U). (A.1)

F (u) takes real values for real arguments whenever u has that property. It is easy to
see that the derivative of F at u is the linear map from I−A′

ρ′ to I−Aρ′ :

DF (u)h = I−(I +Dxu)
−1[Dxf ◦ U h (A.2)

−Dxh (I +Dxu)
−1 (ω + π2 + f ◦ U)].

We want to find a solution of

F (ut) = (1− t)F (u0), (A.3)

with 0 ≤ t ≤ 1 and “initial” condition u0 = 0. Differentiating the above equation with
respect to t, we get

DF (ut)
dut

dt
= −F (0). (A.4)

Proposition A.2. If u ∈ B, then DF (u)−1 is a bounded linear operator from I−Aρ′ to
I−A′

ρ′ and ‖DF (u)−1‖ < δ/ε.

From the above proposition (to be proved in Section A.0.1) we integrate (A.4) with
respect to t, obtaining the integral equation:

ut = −
∫ t

0

DF (us)
−1 F (0) ds. (A.5)
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In order to check that ut ∈ B for any 0 ≤ t ≤ 1, we estimate its norm:

‖ut‖′ρ′ ≤ t sup
v∈B

‖DF (v)−1F (0)‖′ρ′
≤ t sup

v∈B
‖DF (v)−1‖ ‖I−f‖ρ′ < tδ‖f‖ρ′/ε,

so, ‖ut‖′ρ′ < δ. Therefore, the solution of (A.3) exists in B and is given by (A.5).
Moreover, if X is real-analytic, then ut takes real values for real arguments.

It is now easy to see that

U∗t X −X0 = I+
∑
n≥2

(−D(Ut − Id))nX0 + I+U∗t f + (1− t)I−f.

So, using Lemma A.1,

‖U∗t X −X0‖ρ′ ≤ 1

1− ‖ut‖′ρ′
(‖ω‖ ‖ut‖′ρ′2 + ‖f‖ρ) + (1− t)‖f‖ρ′

<
1

1− δ

(
δ2‖ω‖‖f‖ρ′/ε

2 + 1
) ‖f‖ρ + (1− t)‖f‖ρ′

<

[
1

1− δ

(
δ2‖ω‖
ε

+ 1

)
+ 1− t

]
‖f‖′ρ.

Moreover, ‖U∗t X−X0−I+f−(1−t)I−f‖ρ′ = O(‖f‖2
ρ), hence the derivative ofX 7→ U∗t X

at X0 is I− tI−.

A.0.1. Proof of Proposition A.2.

Lemma A.3. If ‖f‖′ρ < ε < σ/6, then DF (0)−1 : I−Aρ′ → I−A′
ρ′ is continuous and

‖DF (0)−1‖ < 3

σ − 6‖f‖′ρ
.

Proof. From (A.2) one has

DF (0)h = I−(f̂ −Dω)h

= −
(
I− I−f̂ D−1

ω

)
Dω h,

where f̂ h = Df h−Dhf and Dω h = Dxh (ω +π2). Thus, the inverse of this operator,
if it exists, is given by

DF (0)−1 = −D−1
ω

(
I− I−f̂ D−1

ω

)−1

.

The inverse of Dω is the linear map from I−Aρ′ to I−A′
ρ′ :

D−1
ω g(x,y) =

∑

k∈I−

gk(y)

2πik ·X0(y)
e2πik·x,

and is well-defined since Lemma 3.2 implies that |k · X0(y)| > σ‖k‖/2, with k ∈ I−

and y ∈ Br. So,

‖D−1
ω g‖′ρ′ =

∑

k∈I−

1 + 2π‖k‖
2π

sup
y∈Br

∥∥∥∥
gk(y)

k ·X0(y)

∥∥∥∥ eρ′‖k‖

<
∑

k∈I−

1 + 2π‖k‖
πσ‖k‖ ‖gk‖re

ρ′‖k‖ ≤ 3

σ
‖g‖ρ′ .
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Hence, ‖D−1
ω ‖ < 3/σ. It is possible to bound from above the norm of f̂ : I−A′

ρ′ → Aρ′

by ‖f̂‖ ≤ 2‖f‖′ρ′ . Therefore, ‖I−f̂ D−1
ω ‖ < 6

σ
‖f‖′ρ′ < 1,and

∥∥∥∥
(
I− I−f̂ D−1

ω

)−1
∥∥∥∥ <

σ

σ − 6‖f‖′ρ′
.

The statement of the lemma is now immediate. ¤

Lemma A.4. Given u ∈ B, the linear operator DF (u) − DF (0) mapping I−A′
ρ′ into

I−Aρ′, is bounded and

‖DF (u)−DF (0)‖ < ‖u‖′ρ′
1− ‖u‖′ρ′

[(
4π

ρ− ρ′
+

4− 2‖u‖′ρ′
1− ‖u‖′ρ′

)
‖f‖′ρ +

2− ‖u‖′ρ′
1− ‖u‖′ρ′

‖ω + π2‖
]
.

Proof. The formula (A.2) gives

[DF (u)−DF (0)] h = I−(I +Dxu)
−1 [Dxf ◦ U h− (I +Dxu)Dxf h

−Dxh (I +Dxu)
−1(ω + π2 + f) ◦ U

+(I +Dxu)Dxh (ω + π2 + f)]

= I−(I +Dxu)
−1{A+B + C},

where

A = [Dxf ◦ U −Dxf −DxuDxf ] h

B = DxuDxh (ω + π2 + f)

C = −Dxh (I +Dxu)
−1 [f ◦ U − f −Dxu (ω + π2 + f)] .

Using Lemma A.1,

‖A‖ρ′ ≤
(

4π

ρ− ρ′
‖f‖′ρ‖u‖ρ′ + ‖f‖′ρ′‖u‖′ρ′

)
‖h‖ρ′ ,

‖B‖ρ′ ≤ (‖ω + π2‖+ ‖f‖ρ′) ‖u‖′ρ′‖h‖′ρ′ ,
‖C‖ρ′ ≤ 1

1− ‖u‖′ρ′
[‖f‖′(ρ+ρ′)/2‖u‖ρ′ + ‖u‖′ρ′ (‖ω + π2‖r + ‖f‖ρ′)

] ‖h‖′ρ′ .

¤

To conclude the proof of Proposition A.2, notice that

‖DF (u)−1‖ ≤ (‖DF (0)−1‖−1 − ‖DF (u)−DF (0)‖)−1

<

{
σ

3
− 2ε− δ

1− δ

[(
4π

ρ− ρ′
+

4− 2δ

1− δ

)
ε+

2− δ

1− δ
‖ω + π2‖r

]}−1

<
δ

ε
.

The last inequality is true if

ε < δ

[
σ

3
− 2δ

(1− δ)2
‖ω + π2‖r

] [
1 + 2δ +

δ2

1− δ

(
4π

ρ− ρ′
+

4− 2δ

1− δ

)]−1

with a positive numerator N and denominator D in the r.h.s. This is so for our choices
of ε and δ < 1

2
, by observing that

‖π2‖r = sup
y∈Br

‖y‖ ≤ a |γ(n)|−1‖M (n)‖+ b‖ω‖ < 1

2
‖ω‖, (A.6)
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thus ‖ω + π2‖r <
3
2
‖ω‖ and

2δ

(1− δ)2
‖ω + π2‖r < 12δ‖ω‖ < σ

6
.

So, N > δσ/6, D < 7, and finally ε ≤ σ2

42‖ω‖ <
σ
42
< N/D.
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1995.
[32] J.-C. Yoccoz. Analytic linearization of circle diffeomorphisms. in Dynamical systems and small

divisors, Ed. Marmi and Yoccoz, Lecture Notes in Mathematics, 1784, Springer-Verlag, 2002.

Department of Mathematics, University of Toronto, 100 St George Street, Toronto,
Ontario M5S 3G3, Canada

E-mail address: khanin@math.toronto.edu
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