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ABSTRACT. We construct a renormalization operator acting on the space of analytic
Hamiltonians defined on 7*T¢, d > 2, based on the multidimensional continued frac-
tions algorithm developed by the authors in [6]. We show convergence of orbits of the
operator around integrable Hamiltonians satisfying a non-degeneracy condition. This
in turn yields a new proof of a KAM-type theorem on the stability of diophantine
invariant tori.

1. INTRODUCTION

The connection between KAM and renormalization theories has been realized for
quite some time. Renormalization approach to KAM has several important advantages.
First of all, it provides a unified setting which allows to deal with both the cases of
smooth KAM-type invariant tori and non-smooth critical tori. Secondly, the proofs
based on renormalizations are conceptually very simple and give a different perspective
on the problem of small divisors. For the continuous-time situation, several KAM re-
sults for small-divisor problems in quasiperiodic motion have been obtained by studying
the stability of trivial fixed sets of renormalization operators (cf. e.g. [7, 12, 13, 10, 3]).
There was however a relevant restriction when dealing with multiple frequencies. Be-
cause renormalization methods rely fundamentally on the continued fractions expansion
of the frequency vector, the lack of a multidimensional version of continued fractions
was the reason for failing to replicate KAM in its full generality. This limitation was
recently overcome in [6] by adapting Lagarias” algorithm [11] and deriving estimates for
multidimensional continued fractions (MCF') expansions of diophantine vectors.

We present here a further application of the multidimensional renormalization method
following [6] (for vector fields on the torus) and [9] (for skew-product flows over transla-
tions on the torus), illustrating once again the connection between KAM and renormal-
ization methods tackling quasiperiodic motion problems. Moreover, we hope that our
work could lead to a better understanding of the behaviour of renormalization around
critical fixed points. The only rigorous result in this direction is a computer-assisted
proof of the existence of such critical fixed point in the golden-mean d = 2 case [8].

Our present renormalization scheme is similar in spirit to Koch’s [7]. One of the
differences is that the (analytic) Hamiltonians considered in [7] are close to the integrable
(degenerate) Hamiltonian R? > y +— w - y. So, due to the degeneracy condition there
are unstable directions for the trivial fixed point of renormalization, and thus the KAM
domain will correspond to the stable manifold. In our approach we deal with an extra
quadratic term in the integrable case which implies convergence under renormalization
on a ball. Moreover, the frequency vector w € R? in [7] is assumed to be of a special
kind (known as Koch type, cf. [12]) corresponding to a zero Lebesgue measure set. In
our work the result on the stability of invariant tori is valid for any diophantine vector,
a full measure set. It is still a fundamental open problem to determine the largest set of
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frequencies for which the stability of KAM tori holds. We also expect that our methods
can be adapted in order to deal with Hamiltonians of class C*.

Let B C R? d > 2, be an open set containing the origin, and let H° be a real-analytic
Hamiltonian function

1
Ho(w,y)zw-y+§TyQy, (z,y) € T x B, (1.1)

with w € R? and a real symmetric d x d matrix Q. H" is said to be non-degenerate if
det Q # 0. We say w € R? is Diophantine if there are constants 5 > 0 and C' > 0 such
that

|||k w| >C, keZ—{0}. (1.2)
In this paper we prove the following theorem.

Theorem 1.1. Suppose H° is non-degenerate and w is Diophantine. If H is a real
analytic Hamiltonian on T? x B sufficiently close to H°, then the Hamiltonian flow of
H leaves invariant a Lagrangian d-dim torus where it is analytically conjugated to the
linear flow ¢y(x) = = +tw on T, t > 0. The conjugacy depends analytically on H.

Sketch of the proof. Our proof of Theorem 1.1 is related to the one in [6] done in
the context of vector fields on T¢. Hamiltonian vector fields involve more complicated
analysis since there is extra dynamics on a vertical direction (action) and we need to
preserve the symplectic nature of the problem. Our goal is to find an analytic embedding
T¢ — T9 x B that conjugates the Hamiltonian flow to the linear flow on the torus given
by w.

We do not work directly with vector fields, instead we renormalize Hamiltonian func-
tions H(z,y) = H'(x,y) + F(x,y) where (z,y) € T¢ x B and F is a sufficiently small
analytic perturbation. Using a rescaling of time we may assume that w = (§) for
some Diophantine o« € R?!. The perturbation F is decomposed in a Taylor-Fourier
series F(x,y) = Y g, Feoyl' - yy'e*™*® where the sum is taken over k € Z? and
v; € NU{0}. By the analyticity of F', its modes decay exponentially as ||k| — +oo for
fixed v.

Renormalization is an iterative scheme that at each step produces a new Hamiltonian.
Suppose that after the (n — 1)-th step the Hamiltonian is of the form

_ 1
anl(way) :w(n 2 y+ éTanfly_‘_anl(way) (13)

where w1 = ( ot "V is given by the continued fraction algorithm (see section
2) and @),,—1 is a symmetric matrix with non-zero determinant. Moreover, we assume
that F,,_; only contains Taylor-Fourier resonant modes (said to be in [ ), i.e. satisfy-
ing w1V . k| < 0, ||k or ||v| > 7._1]|k|| for some 0,1, 7,1 > 0. So, the n-th step
is defined by the following operations:

(1) Apply a linear operator corresponding to an affine symplectic transformation
given by (z,y) — (T(”)flaz, Ty +b,) for some fixed vector b,,.

(2) Rescale the action in order to “zoom in” around the invariant torus.

(3) Rescale time (energy) to ensure that the frequency vector is of the form w™ =
(o),

(4) Elilminate the constant mode of the Hamiltonian.

(5) Eliminate all the modes outside the resonant cone I} (thus avoiding dealing
with small divisors) by a close to the identity symplectomorphism.
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The first transformation above has a conjugate action k — 7 . Tt follows from
the hyperbolicity of T that this transformation contracts I | if o, ; and 7, are
small enough. This significantly improves the analyticity domain in the @ direction
which implies the decrease of the estimates for the corresponding modes. As a result,
all modes with k # 0 become smaller.

Besides the (trivial) case (k,v) = (0,0) which is dealt by operation (4) above, we
control the size of the remaining k = 0 modes in different ways. The case S := >, v, =1
(corresponding to the linear term in the action y) is eliminated by a proper choice of
the affine parameter b,, depending on (),,_; and the perturbation. That is, b,, is used to
eliminate an unstable direction related to frequency vectors. The quadratic term in the
action (S = 2) is included in the new symmetric matrix @),, which has again non-zero
determinant and becomes smaller due to the action rescaling. Finally, we show that the
action rescaling is also responsible for the decrease of the higher terms S > 3.

The overall consequence of the iterative scheme just described is that it converges to
a limit set of Hamiltonians of the type y — v - y. That is, the “limit” is a degenerate
linear function of the action, and from that we show the existence of an w-invariant
torus for the initial Hamiltonian. To prove convergence we need to find proper choices of
o, and 7, as well as of stopping times ¢,,, which turns out to be possible for Diophantine
w. Roughly, too small values of ¢,,_; and 7, ', make harder to eliminate modes as they
are “too” resonant. On the other hand, large values imply that 7™ does not contract
I . Similarly, large ¢,, —t,_; improve the hyperbolicity of the matrices T but worsen
the estimates on their norms and consequently enlarge the perturbation.

In section 2 we review the MCF algorithm contained in [6] and state estimates needed
for following sections. In section 3 we define the renormalization operator and iterate
it to show convergence to a trivial limit set. We are then able to prove Theorem 1.1 in
section 4. In section 5 we present a proof of Theorem 3.6 (similar to [7, 1]) that finds a
symplectomorphism capable of eliminating the non-resonant modes of a Hamiltonian.

2. MULTIDIMENSIONAL CONTINUED FRACTIONS

For completeness we review here the ideas contained in [6].

2.1. Flow on homogeneous space. Denote by G = SL(d,R), I' = SL(d, Z) and take a
fundamental domain F C G of the homogeneous space I'\G (the space of d-dimensional
non-degenerate unimodular lattices). On F consider the flow:

' F—F, M— Pt)ME", (2.1)

where
E' = diag(e™®,..., et e V) e G

and P(t) is the unique family in I that keeps ®'(M) in F for every ¢ > 0.
Given w = (¢) € RY, we are interested in the orbit under ® of the matrix

M, = <é 01‘) . (2.2)

For this, consider a sequence of times
ty=0<t; <ty <- -+ — 40 (2.3)
such that the matrices P(t) in (2.1) satisfy
P™ .= P(t,) # P(t,_1). (2.4)
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The sequence of matrices P™ € SL(d,Z) are the rational approximates of w, called
multidimensional continued fractions expansion. In addition we define the transfer

matrices )

7™ = pM) ph-D=" (2.5)
The flow of M, taken at the time sequence is thus the sequence of matrices
M®™ = &t (M) = P M,E". (2.6)
Using some properties of the flow, the above can be decomposed (see [6]) into
(n 0
w_ (I o) (A

with 7™ being the d-th component of the vector e(Vt P AM s a (d—1) x (d—1)
real matrix and a™, 8™ € RI1,
Define w™ = ("), w® = w and, for n € N,

0
1
where
A = ie(d_l)t” and = An (2.9)
" ,y(n) I /\n—l . .
Consider now the cone
K = {€ € RY: 6w < o, l€]} (2.10)
for a given o,, > 0. We are using the norm ||£|| = Zle €.
Let || - || denote the usual matrix norm
[ M|
M =TT (2.11)
]

Notice that any A € SL(d, Z) has ||A|| > 1, as is the case of the norm of 7™ its inverse
and transpose.

Lemma 2.1 ([6]). If &€ € K"V then there is cq > 0 such that for alln € N
- n— -1
17076 < o (a7 + IO O el 212)
where 0t, = t, — t,_1.

2.2. Norm estimates for diophantine vectors. It is a well known fact that the sets
DC(p) of diophantine vectors with exponent 5 > 0 are of full Lebesgue measure [2].
On the other hand, the set DC(0) has zero Lebesgue measure.

Proposition 2.2 ([6]). Letw € DC(8), B > 0. There are constants ¢y, ¢z, 3, Cy, Cs, Cg, C7 >
0 such that, for alln € NU {0},

MM < eyexpl(d—1)6t,], (2.13)
IMO T < epexp(Bt,), (2.14)
[P < cyexp[(df+1—0)t,], (2.15)
IPO7Y < cqexpl(d— 1+ 0)t,) (2.16)
IT™| < csexpl(1—0)dt, +dot,)], (2.17)
ITO 7 < esexpl(d — 1)(1 — 6)6t, + dOt), (2.18)
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and

2
C7 exp {— 0(1d_ 7~ (d — 1))15”} < 7™ < ¢y exp[(d — 1)6t,], (2.19)
where Ot,, = t, — t,_1 and 0 = B/(d+ ().

Proposition 2.3. Let w € DC(3), 3> 0. If§ € K"V, then there is cq > 0 for all

neN
—1 _ _
HTT(n) £|| < cge (1-0)dtn+dftn—1 (Cﬁan_led&” +01€2) ||£||7 (2'20)
with 0 = B/(d+ ().
Proof. The estimate follows from applying Proposition 2.2 to Lemma 2.1. ([l

3. RENORMALIZATION OF HAMILTONIAN FLOWS

3.1. Preliminaries. Consider the symplectic manifold 7*T¢ with respect to the canon-
ical symplectic form Zle dy; A dx;. As the cotangent bundle of T? is trivial, T*T¢ ~
T¢ x R?, we identify functions on T*T? with functions on T¢ x R¢. By lifting to the
universal cover, we consider functions from R?? into R and extend them to the complex
domain.

Let © be a neighbourhood of R? x {0} in C??. A Hamiltonian is a complex analytic
function H: Q — C, Z%periodic on the first coordinate, written on the form of a
Taylor-Fourier series

H(x,y) = Z Hy, y" ™k, (x,y) € Q, (3.1)
(k,w)erl

where [ =Z% x (NU{0})¢, Hg, € C and y* = yi* ...y,
Let the positive real numbers p and r be given in order to determine the domain

D,.=D,x B, (3.2)
where
D,={x e C% |Imz| < p/27} and (3.3)
B, ={yeC" |ly| <r},
for the norm |ju| = 327, |u;| on C%. Moreover, we will be using the norm of matrices

given by [|Q| = max;_,_4 3", |Qi;|, where Q,; are the entries of a d x d matrix Q.
Consider the Banach space A,, of Hamiltonians defined on €2 = D, ,, which extend
continuously to the boundary and with finite norm

| Hllpw = S |y 17?1, (3.4)

(k,v)el

Similarly, take a norm on the product space A2 = A, x- - -x A, given by ||(Hy, ..., Ha)l|pr =

S22 ||H|,». Using this we define the Banach space A’ of Hamiltonians H € A,,
with finite norm
1210 = [1H]pr + [V H |-
A property that will be used several times in this paper is the Cauchy estimate: for
any 0 > 0 we have
27 .
10:H lp.r <~ Hlpror,  H € Aprsr, 1<i<d,
(3.5)

1 .
103 H lpr < SNHlprrs,  H € Apris, d+1<j<2d,
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where O denotes the partial derivative with respect to the kth argument. In particular

|, < (1 ;

The constant Fourier modes will be written by the projection

EF(y) - A‘d F(w7 y)dw = Z FO,qu, EVF(y) = Foyy”. (37)

2r+1

) T . 36)

The space where EF lies is denoted by EA, and the natural induced norm is || - ||,
Similarly, we define EA/ with norm || - ||].

In the following we will use the notation A < B to mean that there is a constant
C' > 0 such that A < CB.

Remark 3.1. We will be dealing with maps between Banach spaces over C with a
notion of analyticity stated as follows (cf. e.g. [5]): a map F defined on a domain is
analytic if it is locally bounded and Gateux differentiable. If it is analytic on a domain,
it is continuous and Fréchet differentiable. Moreover, we have a convergence theorem
which is going to be used later on. Let {F;} be a sequence of functions analytic and
uniformly locally bounded on a domain D. If limy_, o, Fx = F on D, then F'is analytic
on D.

3.2. Change of basis and rescaling. The following transformations leave invariant
the dynamics of the flow generated by a Hamiltonian, producing an equivalent system.
They consist of

e an affine symplectic transformation of the phase space,
Lo: (x,y) — (T 2, Ty +b,),  (x,y) e C, (3.8)

for some b,, € C?,
e a linear time (energy) change,

H s n,H (3.9)

where 7, is defined in (2.9),
e a linear action rescaling,

H s iH(.’ [in-) (3.10)

with a choice of u,, > 0 to be specified later on,
e and the (trivial) elimination of the constant term

H— (I-Ey)H. (3.11)
Notice that EH o R, = EH and
R.oL,=L,0oRpm, (3.12)
with
R.: (x,y) — (x+ 2,9), z € Ch (3.13)

Forn € N, p,_1 > 0 and r > 0, we are going to apply the transformations (3.8)-(3.11)
to Hamiltonians of the form

_ 1
H(x,y) =" y+ 5 yQuay + Fl@,y),  (2,y) €D, (3.14)
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where ),,—1 is a d X d symmetric matrix and F' € A, _, .. We thus get new Hamiltonians
which are images under the map

Lo(H)=(I- E@%H o Lo, ftn)-

In order to simplify notations, we write

O, (y) = pin Ty + by, (3.15)
So, for any (x,y) € L;lDPn_M,
L,(H)(x,y) =
n e 1
G- EO)Z— w3, (y) + 5 P, () Qn1®n(y) + F o Lz, iny)| . (3.16)

By the decomposition F' = (I — E)F + Fj and using the Taylor expansion of Fj:

2
Fyo®,(y) = Fy(bn)+tn 'V Fy(b,) 'TMy+ % TyT™W D?Fy(b,) "T™y+T,(y), (3.17)

with T, (y) = O(||ly||?), we get
L,(H)(z,y) =™ -y + 1, [ 0,Qn1 + VEy(b,)] 'TMy
+ Z—"Tn(y) + Z—"(H _E)F o L(, jiny).

In order to “normalize” the (Fourier constant) linear term in y of EL, (H) by making
it equal to w™ -y, we choose b,, inside the domain of VF, such that

Qn_1b, + VFEy(b,) =0. (3.19)
The quadratic term is dealt considering a new symmetric d X d matrix (),, being
Qn = Nuptn T [Qnoy + D*Fy(by,)] T (3.20)
We can finally write
Lo(H)@,y) =« -y + 3 yQuy + Lu(Fo)(y) + Eu(F ~ F)(@y),  (321)
where we have introduced the operator
L.: Fy— o, (3.22)

n

for the cubic and higher terms in y, and

L (I-E)F — Z—"(H —E)F o Ly(-, fin") (3.23)

for the non-constant Fourier modes. The above operators are defined in EA, and
(H B E)Apn—1,r'
For a given v > 0, denote by A, the set of all H as in (3.14) such that || Fo|,,_,» < 7

Lemma 3.2. Ifdet(Q,-1) # 0 and

16]1Q,, 411"
there is b, € C'(A,,,C%) such that, for all H € A, , b, = b,(H) satisfies (3.19) and

5. (DIl < /M@ Bl < 3. (3.25)

Vn (3.24)
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Moreover, det(Q,,) # 0 where @Q,, is given by (3.20), and
A
palnal (1QR 211171 = 2 Foll,)

In the case Fy is real-analytic and Q,_, is real, b,(H) € R? and Q,, is also real.

Proof. Consider the differentiable function F(H,b) = b+Q, ', VEy(b) defined on A, x
B, /2. Notice that F(H__,,0) = 0. Moreover, the derivative of F with respect to the
second argument,

DyF(H,b) =1+ Q' D*Fy(b), (H,b) € A, X B.ja,
admits a bounded inverse because

2 — .
| D Folly/2 = dflngéd’\aaVFOHr/?

< (4/7) IV Follsr/a
< (16/7°)||Fol.
< [@z4I™

by the Cauchy estimate. Thus, the implicit function theorem implies the existence of a
C! function b,: H — b,(H) in a neighbourhood of H? ;| such that

F(H,by(H)) = by(H) + Q1 VEy(b,(H)) = 0,

i.e. a solution of (3.19). Notice that for any H € A, the operator Id —F(H,) is
a contraction with a unique fixed point b,(H). Hence the domain of the C' function
H +— b(H) is extendable to A, and thus (3.25). Assuming Fj to be real-analytic and
()n—1 with real entries, the same argument is still valid when considering B, j» N R¢. So,

b(H) is real and @, is a real symmetric matrix.
From (3.27),

1Q I < (3.26)

(3.27)

Q.5 D* Fo(bu(H))I| < 1, H €A,
Hence, A = Q, 1[I + Q' D*Fy(b,(H))] is invertible. Moreover,

AT < /1@ 17 = ID*Foll2)- (3.28)
Now, Q71 = (uptn) ™t TT™ A-IT™ ™ thus (3.26). 0

Lemma 3.3. Ifr <1’ and
”

T 20

0

then L,: EA, N A, — EA’, and

3 L\ T
£ < il (1+ 51 ) 73 TR (3:30)

> 1, y € B, and the map

Proof. Let H € A,,, R = m

f:{z€C:|z| <R} —C*
. (3.31)
2 Fo(zp "T™y + by (H)).

Hence T, as in (3.17) can be written as
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Therefore,
/

1 ),

=g 2°(2 — 1)

/
ITnlli =

|z

7'/

1
< —— sup Fy(zpn, 'T™ - b, (H i

Since [|y|| < ', in view of (3.25),
sup ||z Ty + b, (H) || < Ry T 7+ [[ba(H)|| < 7/2,

|z|=R
and
s [Ett T b, () < [l + B | T [V
. (3.32)
Q%Mﬁ-umm_0+—)wu
Thus, HTnH;/ < (1+ 1/27“’)[R2(R — 1)]’1||F0||T and
7l Il (0 1N (4l | T
VEa(E L = mlyp g, < Il (L 1ol
m w T2 ) = a0
]

3.3. Far from resonance modes. Given o, 7, > 0, we call far from resonance modes
with respect to w™ the Taylor-Fourier modes with indices in

L ={(k.v) € I: W™ - k| > ou| k], [v] < 7allk] }- (3.33)

The resonant modes are the ones in I = I — I.-. We also have the projections I and
I over the spaces of Hamiltonians by restricting the Taylor-Fourier modes to I} and
I, respectively. The identity operator is T =1} + 1.
Moreover, take
TT(n+1) -1 k
Ao wp | H

(3.34)
k0, |w() k| <o, || k|| Il

3 4. Analyticity improvement. The next lemma means that every Hamiltonian in
L 1A r MA,,, ie. a function on D, _, , into C, is mapped by L, into A, . - The

analytlclty strip width is improved whenever A,,_; is small enough. Lemma 3.5 will
“convert” this improvement into a norm reduction.

Lemma 3.4. If6 >0, r <71/,

_ 2 ~1
<Pl s and > (o, + )| T 3.3
pn_An—l an Tn—10g2(pn+ )H H7 ( )
then L, as a map from (I7 | —E)A,, . NA, to (I— E)A, .. is continuous with
~ 21 r ‘nn‘
Lo <1+ — . 3.36
60 < (145 + gt ) 12 (330

Proof. Let F € (I} _| —E)A, ,,NA,,,
E={0,v):ve(Nx {0} and J,={kcZ® |k-w™| <ok} (3.37)
Using Lemma 3.2 and (3.29) we have

" roo2, r
Un = i) TN+ B ()] < 7+ ZHQRAN [ Follr < 5 (3.38)
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We want to find an upper bound on

HF © Ln(a u”)”;);”r/
< 30 (12l T Rl gl TP /) [P e T
It \-E
T
' -E

where we have used the inequality (e™%¢ < §~! with ¢ > 0 and again a choice of s,
verifying (3.29). Here &, = 3 log(r/v,) > £ log2.

Consider separately the two cases corresponding to the definition of the resonance
cone I" ;. We deal first with the modes corresponding to k € J,_; — {0}. By (3.34)
and (3.35) each one of these modes in (3.39) is bounded from above by

2T r
14284 =) plvlgen-allkl 3.40
< * o +27“/210g2>r ¢ (340)

Now, consider ||v| > 7,||k| with k # 0, so that
1T k| < 7 T . (3.41)

These modes in (3.39) are estimated by

27 r B / Tr(n)—1 Il 27 r
120y T el <re 260 -+(0 +0)]| 7T ||/Tn) <(14Z 4T )
( o g, - 5§ 2r*log?2

(3.42)
where we have used (3.35).
Finally, we get
2m T
F Ln s M ,/ ’ < ]. e =~ 91 o F T
IF o Lol < (145 4 i) 1F
and (3.36) follows from (3.23). O
Let 0 < p! < p!, and the inclusion
In: A/PQNTI — A;;{,r’? H— H’Dpxml. (343)
The norm of the k # 0 modes can be improved by the application of Z,,.
Lemma 3.5. If ¢, > 1 and
0 < pp < py, — log(¢n), (3.44)
then
IZ.(T-E)|| < ¢;,". (3.45)

The proof is immediate and will be omited.

3.5. Elimination of far from resonance modes. The theorem below states the
existence of a symplectomorphism isotopic to the identity that cancels the far from
resonance modes of a Hamiltonian close to the quadratic integrable Hamiltonian

1
HY: y w™ . Yy + 3 TyQ,y. (3.46)
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Given p,,v > 0, denote by V. the open ball in A) . . centred at H? with radius
e > 0. We define also

o2 (min {1, =, - r})2

(3.47)

T 2]+ doy)r' (2 4 121+ 2+ )2

and

4]|w®) do,,
o =1+ \/37‘/M' (3'48)

€n

Theorem 3.6. Let r <1’ and o, > 2r'||Q,,||. Then there exist analytic maps &: V., —
A2 where ®(H) is a symplectomorphism, and U: V., — Tt A, . given by U(H) =

H o ®(H), such that L. U(H) =0 and

1,
16(H) —1d [}, <L Hllpnr

(3.49)
| (H) = Hllpnr <@allH = Hl}p 4000
Moreover, if H is real-analytic, then &(H) is real-analytic.
A proof of this theorem is included in section 5.
Lemma 3.7. In the conditions of Theorem 3.6, if ¢ € R? and H € V., , then
B(HoRy) =R, o®(H)oR, (3.50)
onD,, ;.
Proof. If g = &(H) is a solution of Iy o g = 0 in D, ,, then g = R'o®(H) o Ry
solves the same equation for H = Ho Ry, ie. THog=0inD, ,. ([l

3.6. Convergence of renormalization. For a resonance set [/ and u, > 0, the nth
step renormalization operator is defined to be

R,=U,0T,0L,0R,_1 and Ry=Uy,
where U,, is as in Theorem 3.6 at the step n. Notice that if

1
H(y) =w-y+§TyQy+v-y,
then )

for every v € C¢, where

Xo = [ w (3.51)
=1

This means that the renormalizations eliminate the direction corresponding to linear
terms in y. From the previous sections the map R,, on its domain of validity is analytic
by construction. In addition, whenever a Hamiltonian H is real-analytic, the same is
true for R, (H).

Let " > r > 0, pp > 0 and fix a sequence 0, < 1, n € N, and oy > 2r'||Q||. To
complete the specification of the resonant modes and of €, in Theorem 3.6, take 7o = 1

and
1

2p0]| 'T™ ]
= 3.52
7 B, _1log?2 ( )
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according to Lemma 3.4, with

- H A (3.53)

i=0
Notice that the A,’s depend on o,.

Consider also the constants v and ¢ as they appear in Theorem 3.6 and Lemma 3.4,
respectively.

We now define the non-increasing sequence 0y =1,

©,, = min @n_, )
{ 1 ’IIQH H|m|||T“>H [ T2

n

i 1-3 . |2
_ 2 — 71—[ znm{"ﬁzl\ , |7l '}71 <1, (354)
[T 1T iy 220G TO P TO e

1 A T 3
Cn = <1+§) (?) ©nl| T(n)H > 1.

In order to use the results obtained earlier connected with the building blocks of the
renormalization operator, and to get convergence of the renormalization (in the theorem
below), we choose

with

n—1 n—1
1
where
2m r |1 |On 1
n = L2{1+— > 1,
¢ max{ < o ) * 2r'% log 2) 1O
(3.56)

o 1/2
n = L <1.
: (28@ max{1, |nn|}@n_1) =

Recall that ¢, is our choice for Lemma 3.5. Moreover, our choice of pu, implies that

< 1 < 1 r 3/2 < r (3 57)
=012 = 28\ T ) = &[T '

so Lemma 3.3 holds.
To have p,, positive for all n we need to study the following function of w € R?
associated to the choice of o,,:

+0c0 +o0
=" Bilog(¢s1) + (5+1) > B, (3.58)
=0 =0

It is simple to see that B depends on the multidimensional continued fraction expansion
of w through the matrices 7™ and the scalars 7,. The remaining dependences are on
fixed constants and on (), but these turn out to be irrelevant as we will be uniquely
interested in the convergence of the series in (3.58). In this sense, we can look at B as
only depending on the arithmetics of w. As we will see in the following part of this
section, for diophantine vectors w we can find a sequence o,, for which B(w) converges.

Notice that if B(w) converges, then B, — 0 as n — +oo. Also, 7, > B!, — o
by (3.52) and ¢, < 7,2 — 0 by (3.47). Hence, O, < 2 — 0 by the third term in
min{. ..} of (3.54).
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We denote
H,=TR,(H)

and associate the sequence HY of quadratic integrable Hamiltonians given by (3.46),
where @, is defined by (3.20).

Theorem 3.8. Suppose that det(Q) # 0,
B(w) < +o0, (3.59)

and p > B(w) + v. There exists ¢, K > 0 such that if H € A,,» and |H — H||,.» < c,
then H is in the domain of R, and

|Hy — H|lpr < KO,|H — H°|| ), n€NU{0}. (3.60)

Proof. Let pg = p — v > B(w). Hence, by the definition of p,, there is R > 0 satisfying
pn > RB; ', for all n € N.
If ¢ < &g we use Theorem 3.6 to get Ro(H) € Ij A, , with

HHO - HOHPOJ’ < K®0HH - HOHp,T’

for some K > 0. Take Qg = Q.
Now, for n € N assume that H,_; € I1 | A, .. Suppose that

|Hyy = Bl s < KOu 1| H — H|,0,

n—1
3 i i
1Qn-1ll < QI T] St 17O T,
i=1

(3.61)
n—1 ) L
1QA N < NQTH I T T 26 el =M IO 111 TT
i=1
So, for ¢ small enough, using the last term in (3.54) we get
@1/21 n 1/2 1 —1 1 1 7"2
n 25¢} 2| TO || || T <———— (3.62
01 G TT2Pa T T e o f < e (462)

Thus, Lemma 3.2 is valid and as a consequence ||b,(H,—1)| < /8.

After performing the operators £,, and Z,,, we want to estimate the norm of the result-

ing Hamiltonians. The constant and non-constant Fourier modes are dealt separately
in

ToLo(H) = H® + L, (EH,_y) + L, L0y(1 — E)(H,_y). (3.63)

For the former we use Lemma 3.3 and for the latter Lemmas 3.4 and 3.5. So,

1 A
6@l <275 (14 50 ) (5) il 1T FOualH = Hl,

/
2r (3.64)

Furthermore, ¢,, yields

~ 2 r
(0= B o)l < K (1457 4

) 27”'210g2) M;1¢;1‘nn|@n71HH_HOHp,r/

(3.65)
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Moreover, assuming ¢ to be small enough, we estimate (3.20) using (3.27), ||Qn_1|| 7' <
1@ 2], (3.62) and the second inequality in (3.61) to obtain

1Qull < pnla IT™ TN Qua 11+ 1672 K01 [|Qual| )
o, (3.66)

T3 i i
<llQITT Sl ITNTTON < 25,
i=1

where the last inequality comes from the second term in (3.54). By (3.26) and again
(3.62),
-1 =L A—
7T QL
|| (1 = 16r KO, 1 [| Q14 )
1

n
- — - i)l i)~
< NQ I T 2 e =1 IT @4 TTO .

i=1

I, <

(3.67)

The Hamiltonian Z, L, (H,_1) is inside the domain of U, since for ¢ small enough
0 1c KO, <&, and ||Q,| < 0,/(2r"). The result follows from (3.49). O

Remark 3.9. The above can be generalised for a small analyticity radius p by consider-
ing a sufficiently large N and applying the above theorem to H = UyLy .. . U1 L1Uy(H),
where H is close enough to H. We recover the large strip case since py is of the order
of By',. It remains to check that py > B(w™) 4 v. This follows from the fact that
B(w™) = By' [B(w) — By(w)] where By (w) is the sum of the first N terms of B(w)
so that By(w) — B(w) as N — +o0.

Lemma 3.10. If w = () € R? is diophantine, then (3.59) is verified.

Proof. To show (3.59) it is only necessary to check that we can find sequences o,

and t, for which the series 3" By|log [7as1|l, 3= By log ||T®Y]], 3 B, log |T®+D 71,
3" B, log [|[w®™ V]|, 3 B,|logo,i1| and Y B,|log ©,,41| converge.
Let us set, for each n € N,

th=(1+&" and o, =e ™"

where positive constants ¢ and a will be chosen in the following and 6t, = t, — t,.1.
We shall assume that ¢ is large enough that

a C1Co
d———| > log —=. .
(a-12g) 10w (3.68)
So, 0,1 exp(ddt,) > ci1ca/ce as in Proposition 2.3. Hence,
Ap o < e 0 (3.69)
with
d(§ - B) ( a )
a=—>—=—|d-— 3.70
€+ 9) T+ 370)
which is positive if @ > d(1 +&)[1 — 1/(d + 3)]. Thus,
B, = [[ A < Cme e, (3.71)
i=0

where C' is some positive constant. Clearly, > B,, < oc.
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From (2.8) we have [[w™|| < [[M™|| |y™|~1. Thus, using (2.13) and (2.19) we have

d
B +E) &n] ‘
§

Now, using (2.9) and the bounds (2.19), (2.17) and (2.18) we get

(n) . d(1+&)(B+1) ]
|7 H<<ep_ dt ) Ot

(n)—1 N [d(1+&)(d—1+p) }
\T I <<ep_ EEG) Oty

[d(1+¢) (d—1
!nn\<<eXp_ : (d+ﬁ+ﬁ)5tn}.

lw™]| < exp { (3.72)

(3.73)

Finally,

n n n
i i)~ 1L
log [TIT® I log [TI1T® 1, [og [ ] Imill < t.
=1 i=1 =1

n n n
log [T lw®ll, [log [ [ il, [1og [ [ Bi-1| < ta
=1 =1 =1

so that | log ©,| < t,.
Since B,, decays exponentially with ¢,,.1 and log ¢,,,1 grows at most linearly, the series
(3.59) converges. O

(3.74)

4. CONSTRUCTION OF THE INVARIANT TORUS

Here we will always assume to be in the conditions of section 3.6. We use Theorem 3.8
to determine the existence of an w-invariant torus for the flow of analytic Hamiltonians
H close enough to H° (Theorem 1.1). This follows from the construction of an analytic
conjugacy between the linear flow on T? of rotation vector w and an orbit of H.

Let the set A be given by

A={He A, :||H-H,<c}, (4.1)

which is contained in the domain of R,, for all n € NU{0}. Given H € A, H,, € It A, .
It is simple to check that

_

n

— % {(I—Fq)H o gyo [Pr(H)ogioPi(H) o

o [Ppa(H)ogn o0 Pn—l(H)_l] © Pn(H)} © Gn-
Here, g, = &5 (Lx(Hk-1)) is given by Theorem 3.6 at the kth step and
-1
Lit: (@,y) = (TW @, Ou(Hi) (), (4.3)

where @4 (Hy 1)(y) = pp ' TWy + b(H_1). In addition, we have the conformally
symplectic map

PolH) = LI - LI (2, y) <P(”)_laz, o, (H). ..@n(Hn_l)(y)), n>1, (4.4)

H, ([—Eo)(H ogoo Ly* ogyo---oLy)]o gy

(4.2)

and we set Py(H) = Id. Notice that
O (H) ... 00(Ho1)(y) = xn ' P™My + v, (H), (4.5)
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with
n
vn(H) =bi(H) + Y xic1 PUVb(Hiy).
1=2

For n > 1 define

m—-+4o0
I , (4.6)
= bp(Hp1) + Z Mo - e i1 ™ TT(Z_I)bi(Hifl)
i=n+1

if it converges. If that is the case,

a(H) =a1(H) = lirf vn(H) (4.7)
and

a(H) = v,(H) = X "P™ay i (H). (4.8)

Lemma 4.1. The maps a,: A — B,y are well-defined and analytic, taking any real-
analytic H into RY.

Proof. From Lemma 3.2 we obtain ||by(Hy_1)|| < /8 for any k € N. Thus, by (3.57),

TP Ty r <L)”

|| T T D (|| < , 4
H M 1“ ( 1)“ 8 \ & ( 9)
where 1 < n <i— 1. Hence, (4.6) converges and each a,(H) is well-defined in C¢. In
case H is real, a,(H) € R%. The maps H — a,(H) are analytic since the convergence
is uniform. Moreover, (4.6) can be estimated using (4.9),

8’ <

r
1 8r’

lan(H)[| < 2 +

| 3
| =3
N3

O
Lemma 4.2. There is an open ball B centred at H® in A such that, if H € B, we can

/

find sequences R, r, > 0 satisfying: R_1 = p, r_y =1/,

Ry 4 27 KO3 H — HO||,,v < Ry < Hlfg’%)H’ (4.10)
Xn—1T
o+ KO3 H — H ) <rppoy < —22L 4.11
|| ||p, 1 2|| Tp(nil)le ( )
n >0, and
lim R,'©%3 =0. (4.12)

n—-+o0o

Proof. Let p, = minp,. Since Y, is decreasing and |[|[P™]| < [[, |T™] (similar
relations hold for the transpose and inverse matrices), it is enough to check (using the
last term in (3.54)) that

. n . n O
@i/3<<mm{vp*ﬂ||T“H L 1T }
=1 =1

for some 0 < A < 1 by taking R, = cl)\*”@i/:3 and r, = 02@3/3 with small constants
1,2 > 0. Thus, the inequalities (4.10) and (4.11) hold whenever we take a sufficiently
small bound on [|[H — H°||,,. The limit (4.12) is now immediate. O
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Let the vertical translation
for any z € C?. For a given H € A, define the norm || X ||,, = || X o V(|| g, ,r, Whenever
XoVym € A2d

n,"n

Now, consider the isotopic to the identity analytic symplectomorphism
Wo(H) =P, (H) o &, (L, (H,_1)) o Pp(H)™! (4.14)

on P,(H)D,, , with n > 0 and H € A. In particular, W,,(H") = Id. Notice that for H
real-analytic, W,,(H) is real-analytic.

Lemma 4.3. W, is an analytic map on B such that, if H € B,
Wi (H): Va) (Do) = Vain) (Do 1r 1)
and there is K' > 0 verifying
IWo(H) =1d |, < K'O°||H — H|| . (4.15)
Proof. For H € A and (x,y) € Dg, +,,
I Tm P™e|| < | PRy /27 < pn/2m,
|9, (Hoh) . @7 (H)(y + a(H)|| = " TP (y + a(H) — v, ()| (4.16)
<X I P o+ Nl (H)]) < 7
Therefore, P, (H) ™" o Vo) (Pr,r) C D, Moreover, using (3.49),
[WalH) = 1d |l = [Pu(H) 0 [u(ZoLo(Har)) = 1d] 0 Pu(H) ™ 0 Vigar) | 5,m,
< e Pu(H) Tl (Hnr) = HY)ll g (4.17)
< K'O||H — H|| 0,

where P, (H) corresponds to the linear part (z,y) (P(")_lm,xn TPMy) of P,(H)
which has norm bounded by || P, (H)|| < [P™ || + xull "P™].
Now, for (x,y) € Dy, ,, and H € B,

[l Im Wi (H) © Vi (2, y) || < [[Tm(m Wi (H) © Vo (2, y) — @) || + || Tm 2|
< ||Wh(H) =1d||, + R./27 < R,_1/2m,
[m2Wo(H) © Vi (2, y) — a(H)|| < [[meWa(H) © Vo (2, y) —y — a(H) || + [|yl]
< |\Wo(H) =1d ||, + 7 < Ty

So, Wi (H): Vo) (Proirn) = Vair)(PRo_yrm_1)- 0
Define the analytic map I', on B satisfying I',(H): Vo) (Dryr) — Va) (Do),
Do(H) = Wo(H) oo Wy (H) (4.18)
with H € B. We then rewrite (4.2) as
Hol,(H) = %Hn o Po(H)™" + E(H), (4.19)

where E(H) represents a constant (irrelevant) term. Since each W,,(H) is symplectic,
thus T',,(H) is symplectic and H o I',(H) is canonically equivalent to the Hamiltonian
H,. In particular, if H, = H? for some n, there is an w-invariant torus in the phase
space of H,,. We are interested in the general case, H,, — H? — 0 as n — +o0.
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Lemma 4.4. There is ¢ > 0 such that for H € B
T (H) = Dot (H) | < ¢072| H — HO|| 0.
Proof. For each k =0,...,n — 1, consider the transformations
Gr(z,H) =(Wi(H) —1d) o (Id +Gg11(z, H)) + Grya(z, H),
Gn(z, H) =2(W,(H) — 1d),
with (2, H) € {z € C: |z2| < 1+ d,} x B, where we have ¢’ > 0 such that

C/

d, = —1>0.
O | H — HOl

If ||Gria(z, H)||n < (Ry — Ry,)/2m, then G, is well-defined as an analytic map and
|Gz, H)|ln < [[Wi(H) = 1d [| + [|[Grra(z, H)|n-

An inductive scheme shows that

||Gn(2, H)Hn S(Rn—l - Rn)/2W7
n—1

|Gz, H)[ln <D NIWi(H) = 1d ||; + |2] [|[ W (H) = 1d ||,
i=k

<(Rp-1— Ry,)/2m.
By Cauchy’s formula
ITn(H) = Dot (H) |l = [|Go(1, H) — Go(0, H) ||

g e,
|

2mi c=1td,y2 2(2 — 1)
2
ITn(H) = Tpa(H) |l < == sup[|Go(z, H)|x
n |z|=14dn, /2

< O3 H — H||,.

n

and

O

Consider the Banach space C},.(R? C*?) of C"' functions Z%periodic, endowed with
the norm

— k
|£llor = max max | D*£(2).

Our goal is to find parametrizations of invariant tori of the type 8 — (0,a(H)) + f(0).

Lemma 4.5. There exist C > 0, an open ball B C B centred at H® and an analytic
map Y on B' such that, for every H € B', Y(H) = limy o0 I'n(H)|(y=a(m) 15 an
embedding R* — C*, T(H) — (Id,a(H)) € C},.(R, C**) and

IT(H) = (1d,a(H))||er < Cl[H — H|| 0. (4.20)
If H € B’ is real-analytic, then Y(H): R? — R,
Proof. For each H € B, by the first inequality in (3.5),

[T (H) = Tun(H)](; a(H))llor < max sup 1D (H) (@, a(H)) = To1(H) (2, a(H))]|

mEDPn/Q

47
< 5 ITu(H) = Taca(H)
(4.21)
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which is estimated using (4.12). Hence, I',,(H)(-,a(H)) — (Id,a(H)) converges in the
Banach space C},,.(R? C*?), and (4.20) holds. The convergence of T, is uniform in B,
thus T is analytic. If H is sufficiently close to H°, Y(H) is in fact an injective immersion
(embedding) as the space of embeddings is closed for the C'' norm and Y(H) is close to
(Id,a(H)). Finally, for H real-analytic we have Y(H)(R?) C R?*® in view of the similar

property for each W,,(H). O

The Hamiltonian vector field of a Hamiltonian H is Xy = JVH, where J: (z,y) —
(y, —z). The next lemma shows the invariance of the torus defined by T(H) which
corresponds to the linear vector field 8 = w.

Lemma 4.6. For H € B’, we have on R?
Xy oY(H)=D(Y(H))w. (4.22)
Proof. Since I',,(H) is a symplectomorphism, we have for € R?,

Yn(a:) == XH e} Fn(H) e} %(H)(a:,()) — D(FH(H)) e} %(H)(a:,()) XHO(.’B,O)

4.23
= [D(Fn(H)) O Va(H) XHan(H)OVa(H)fHO](wp 0) ( )
Hence,
IYa(@)l| < | DT (H)) (2, alH))[ IVH o To(H) © Vogr) — H)(, 0)]]. (4.24)
In order to estimate the above we first recall (4.19) to show that
VIH o T (H) 0 Vo) = H)(w,0) =3 V[(Hy = H}) o Pu(H) ™ © Vo )(2,0)
"y B ., (4.25)
- Na(H) = v, (H))P™ @, TP™
AnXn
Notice that by induction we get
1 1 1 — 1 1 ; 1
—PWTQ,TPMT =+ PO D2ED by (H;)) TPO (4.26)
AnXn =0 AiXi
Since S (vl Ad) PO T || TP T|©; < 1 and by (4.6) and (4.8)
la(H) = va(H)]| < Xl P i (H)| < O3, (4.27)

the last term in (4.25) is estimated from above by ©2/*. Moreover, the first term in the
rhs of (4.25) is bounded times a constant by

1 _

sl P = Hl < O3 (4:28)

Finally, from the convergence of I';, and

1 1

1PTw(H) (2, al )| < - ITa(H)ln < 2 (4.29)
we find that ||Y,,(x)|| converges uniformly to 0 as n — 400 because of (4.12). O

Lemma 4.7. If H € B’ and x € R?, then
Y(H o Ry) = R, o T(H) o R, (4.30)

where Ry z — z + x is a translation on C<.
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Proof. For each n € N, (3.12) implies that P,(H o R,) = P,(H) and we know that
Pu(H)o Ry, = R;'oP,(H), z € C’. So, from Lemma 3.7,

Wo(H © Ry) = Po(H) 0 6, (LaRy 1 (H 0 Ry)) o Po(H) !
=R, o W,(H)o R,.
Thus, I',(HoR,) = R, oI, (H)o Ry and (4.30) follows using the convergence of I',,. [
The flow generated by Xy is denoted by ¢%; taken at time ¢ > 0. Hence,

(4.31)

GhpolTax oy = Rust-
We prove below the existence of an invariant torus 7 for H close to H’, i.e. an analytic
conjugacy between ¢k |7 and R.

Theorem 4.8. Let D C R? be an open ball about the origin. If H € C*(T¢ x D) is
sufficiently close to HP, then there exists a C* embedding v: T — T x D such that

$yoy=70Ru, t>0, (4.32)

and T = (T9) ~ T? is a submanifold homotopic to {y = 0}. Furthermore, the map
H — ~ 1is analytic.

Proof. The lift H to RYx D of H is assumed to have a unique analytic extension to D, .
Consider the real-analytic Hamiltonian G' = He A, . Suppose that G is close enough
to H? such that G € B’ and Go R, € B' for > 0 and z € D,. Then, v = T(G)|01¢,
which is C! and homotopic to (Id, a(G)), verifies (4.32). This follows from (4.22) and
the equivalent equation

d| d -
- = Rw 5
dt t:O( o) dt t:o(ﬂy ° ftur)

which we integrate for initial condition ¢% = Ry = Id.

We now want to extend analytically v to a complex neighbourhood of its domain.
Take 7(z) = R, o Y(G o R;)(0), z € D,. The maps z — Go R, and H — Y(H)
are analytic and C},(R?,C*) 5 g — g¢(0) is bounded. As 7: D, — C** involves their
composition, it is analytic and Z%periodic. From (4.30), for any & € R¢, we have

(@) = T(G) 0 Ro(0) = T(G) () = ().
Finally, since T is analytic, the same is true for the map H +— ~. 0

As a quasiperiodic invariant torus 7 is always Lagrangian (cf. [4]), we have now
concluded the proof of Theorem 1.1.

5. ELIMINATION OF MODES

Here we present a proof of Theorem 3.6. It is similar to related methods appearing
in e.g. [7, 1]. As we have fixed n, we will not include it in our notations.

Let R = (R, Ry) and R’ = (R}, R}) be such that R > R’ > 0 componentwise. We will
be interested on the set Gr of analytic symplectomorphisms ¢g: D — Dpg satisfying
g—1d € A% and

lg —Id ||z < § = min{(Ry; — R})/2m, Ry — R, }.
We use the notation {-,-} for the usual Poisson bracket associated to J: (x,y) —
(y, —x). In the following R — § stands for R — §(1,1) and ms: (x,y) — y is the pro-

jection on the second component. The lemma below constructs a symplectomorphism
g generated by a function G, and gives several related estimates to be used later.
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Lemma 5.1. Let 0 < £ < 3. If G € Ay and |G|y < £5/(2m + 1), then there is a
unique analytic symplectomorphism g: Dpi_os — C?* such that ||g — Id | g_2s < £6 and

g=1d4+JVGoy, (5.1)
where g(x,y) = (x, mg(x,y)), (x,y) € Dr—_9s. Moreover, for any H € Ap
1H © gllr—25 < | H|[r
|Hog— H| g—2 <2|H| g (5.2)
[Hog—H—{H G}|r-25 < 28| H|r
and the maps G — g and G — H o g are analytic.
Proof. Define the map T': g — Id +JVGog on the open ball B in A% < centred at the
identity and with radius £6. It is simple to check that T'(B) C B, in particular a fixed

point T'(g) = g € B is symplectic. We now show that 7" is a contraction on B and thus
its unique fixed point is the map we are looking for. In fact, whenever g € B we obtain
IDT(g)|| < IDVG o gllr—25 < |DVG||r—s
2r + 1 2r +1 (5.3)
< VGl < TGl <

For the estimates in (5.2) (the first is now immediate) we introduce the differentiable
function

f{z€C:|z| <(}— Ap

5.4
z— Ho(Id+2JVG(Id+z(g — 1d))) (54)
where ¢ = 1/¢ > 2. Cauchy’s integral formula yields that
[Hog—H[p—2 = [[f(1) = f(O)][r-2s
S Wk,
21 Jip=e 12(2 = 1) (5.5)
< o 8w [ f (&)l 25 < 2€[[ H |-
¢ = 1ia=
and
|Hog—H—{H G}|r-25=[f(1) = f(0) = f'(0) -2
L W,
21 Jip=e |22(2 = 1) (5.6)
1
< sup || f(2) || ri—2s < 28| H|| -
C(C B 1) e H ( H 2 H H
By the implicit function theorem the maps G +— g and G — H o g are analytic. O
Lemma 5.2. Let 0 > 2R,||Q||, ¢ > 0 and H € A’y such that
)
H—Hp<é < 7 . 5.7
H In<e'< 2r+1)[1+27+ (1+1)/Ry] (5:7)
Then there is G € I~ A, such that
I"(H+{H,G})=0 and |G|x < T H|| g (5.8)

(2m + 1)e’

Moreover, the map H — G is analytic.
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Proof. Consider the linear operator associated to H:
F:TI" Ay - T Ag, K—1T{H K}. (5.9)
It is well-defined since
ITH{H, K} [ < [VH|r|[ VK] &

< H w1 K N
We will show that F~': I"Ap — I~ A% is bounded and
1 )
177 < —z s S (5.10)
@r+1D)Ro+7+1 2 6+ g (27T + 1)8/

A solution of (5.8) is simply given by G = F (=1~ H). Therefore, |G| < |F | |I"H| -
We start by decomposing any Hamiltonian H = H° + F as

T, Y) = ZHk(y) kT with  Hy(y ZH,Wy
k

Write Dy = Vo HY - V4, with V; and Vs, standing for the derivatives with respect to «
and y. The definition of F in (5.9) yields

FUK) =T (F = Do) K = — (1= FD;*) Dok,

where F(K) = {F, K}. If the inverse of F exists is given by
-1

Fl=_D;! (H - IrﬁDgl) . (5.11)

The map Dy': 1" Ar — I~ A, is linear and given by
- Wk(y) 2rik- -
D01W(w>y): Z - 0 em¥E - Wel Apg.
b (0) 27i(k - VoHO(y))
For each k € I7, using (3.33) and ||Q|| < 0/(2Rs) thus |k - Qy/k - w| < 1/2,
Wi(y) Wi(y) ( k- Qy)"
= eI 5.12
k:-w(1+kk"—%y) k-w; k- -w ( )

we get the estimate

H Wi <ZZ|Wk,V|R'2""|1@r\”R3
k-VoH |, — 4 o | k||
Wi | RY (5.13)
<220
n>0 v
= — 2 [ Wellr.-
ollk|

Similarly, we find the bound

Vo Wi 2| (Wi |RIFFY 27
— < Wl R, - 5.14
Hk'VQHO - Z ollk| Rz” kol 7 ( )
R
Finally,
WiQk 2
R W, 5.15
H(k-V2H0)2 RQHI{:HH k||R2 ( )
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It is now immediate to see that

2 2
Di'W||p < —||W / d V(DWW || < =W g
15 Wila € e[ Wil and [V4(D5 W)l < 2[Wils

Moreover,
vg( Wi(y) ): VoWi(y) — Wi(y)Qk
k-VoH(y)) k-V.H(y) (k-V2H(y))?
which implies
IV2(DF W)l < T W (5.16)
mo Ry

Hence,

2 1 7+1
Dyl <=(1+=— :
12071 o ( * 2m * 27TR2)

As F: T Ay — Ap with ||F|| < 2||VF|| g < 2251||F||g (by Cauchy’s estimate),

=~ 4 1 7+1
I"FDy' <=1+ VF||p <1
D < 3 (14 5o+ 2 IVFl < 1.
and
-~ -1 4 1 7+1 -
I-TFD) |<|1=> (145 VF|r| .
< 0 ‘ [ o ( * 2T * 27TR2) | HR}
Thus F ! exists given by (5.11) and the estimate (5.10) on its norm follows immediately.

O

Consider the pairs R = (p, + v,7") and R' = (pp,7), 0 > 2r'[|Q]| and Hy = H as
given in Theorem 3.6. We are going to iterate the procedure indicated in the previous
lemmas. Let a sequence of Hamiltonians be given by

Hk = kal © Gk, ke Na

where G and g, are determined for Hj_; by Lemmas 5.2 and 5.1, respectively. In
addition, denote by

g¥ =gio---og, (5.17)

the composition of all symplectomorphisms up to the kth-step so that H, = H o g*).
In order to determine the right domains of Hy, G and g, define the sequences

k
Ry= Ry — 40, =R—-4) 4, (5.18)
i=1
with By = R and
1 ) v 1
5kzwm1n{1,%,r'—r} < o (5.19)
So, lim,, ;o Rx > R’ componentwise. From now on, assume that
1 g}
' = min < ~||H° : 5.20
c mm{QH ||R’(27r+1)(1+27T+TT—J51)} (5.20)

Lemma 5.3. If for every k € N, |[I" Hy_y||p,_, <€'/2 and

O _
T He 1l R,y s

Grll; <
H kHkalfisk (27_(_+ 1)6
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then gx(Dg,) C Dg,_, and

k
0 e
lg® —1d|lp, <> ;HH H;
=1

R;_1
(5.21)
_ I,
||g(k) - g(k I)HRk < ;HH Hk—1||Rk—1'
Proof. Recall Lemma 5.1 for £ = ||[I” Hy_1||g,_, /¢’ and check that
O 17—
lgr = 1d{|r, < lgr = Id lres-s0, < 1T Hi-r]l iy
and Ry + 0 < Ry_1 componentwise. Now,
k-1
g™ —Id = (g;—1d)ogi10- 0g+gp—Id. (5.22)
i=1
Thus,
k ks
g™ —1d[m, <D llgi —1d|[lr, < ST Hica g (5.23)
i=1 i=1
Furthermore, as
g™ —g® = (g*V —1d) o g — (¢"V — 1d) + (g — Id) (5.24)

we get

9% — g% Dllz, <(1Dg* ~ I]lp, +1) llgx — 1d |1,

I 21+ 1A &y,
<2 I Hia R,y (T&g ZZ1 ST Hia|reoy +1 (5.25)

-
< Hi il

0
Notice that since &’ < 1||H°||r, we have
e <|H|p—e& < |H|lr < [[H g+ (5.26)
and also
1 3
L IH e < 1T < 21 (527
Lemma 5.4. For any k € N, if |I"H |z < &°/(8||H||g), then
k
- 4 RN e €
e < (AEE) g <5, (5.2
4||H
e~ Helln, < PR (529)
|Hkllr, < 2([H| . (5.30)

Proof. We will prove the above inequalities by induction. The generating Hamilton-
ian GG; given by Lemma 5.2 and the symplectomorphism ¢; by Lemma 5.1 satisfy
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Gl Ry—s, < Oulll” HIl/[(2m + 1)e'], [lgr — 1d [|ro 35, < [[I7H[[rd1/e" and I"Hy =T~ H o

g1 — 1 (H + {H,G1}). Hence,

Wil <o~ 8~ (.6 <2 (T2 e e

and
I~ Hllg, < IV H oy 1, < 22 sl El < 2 H sl e (5.32)
Thus, (5.28) and (5.29) are valid for £ = 1 and so is (5.30) because |H:||r, < ||H1 —

H| g, + ]|
Now, assume that the inequalities are true for k. Under these conditions, Lemma 5.2
guarantees the existence of Gy, so that

0 _
Gkl < g T Hils, (533)

and Lemma 5.1 yields gxy1. Therefore, I"Hyyqy = I Hy o gxv1 — I (Hy + {Hy, Gii1})
and

11" Hy 1l Reyy < N[ Hk © grr — Hy — {Hi, Gria IR, 1

T~ Hy ||, \*
<o ()

(5.34)
k+1_1
4| H||z\> o ghi
< 2 [ H|%
g
Similarly,
[ Hyr1r = Hillryyy SNV Hl|Reys 1951 — 1d [ Ry s
2m+1
< I"H ) H
_45k+16’H k|l Ry Ot 1 || Hi | s, (5.35)
4
SQHH Hy [ H || r-
Finally, making use of the above inequality,
k+1
1Hiiallryer < IH IR+ D IH = Hioa |,
=1
4 Hllr = o
< Hlr+—> > I Hialls,,
o A H R H ]\ .
R R
< e+ )y (AL A
=1
k+1 1
< (1 + Z F) [ H |z < 2[|H| g
=1
O

Theorem 3.6 will now be a consequence of the result below noticing that [|[H||z <
Ry|lw|l + (dR3/2)[|QI < Ro([lw| + do/4).
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Theorem 5.5. If

2 8/2

< ;
12 H)r — 8[| H||r

then there exists g = limg_,, g% € Gr such that I"H o g = 0 on Dg.. Furthermore,
the maps &: H— g andU: H — H o g are analytic, and

|~ H < & =

(5.37)

1
lg —Tdll < ZITHlr (5.38)

12||HO
|Hog—Hlw < (m/%) |H — H| . (5.39)

Proof. Lemmas 5.3 and 5.4 imply that the sequence ¢*) converges to a map ¢: Dp —
Dpgr which is analytic and symplectic, and H,, = limy ., . Hy = H o g. Moreover,
[THog =1"H, = 0. Since the convergence is uniform, the maps H — g and H +— Hog
are analytic.

Notice that

+o0 _ 2i—1 _ ~+o0 _ 2i
4 H[[rIT" H|r 4 H[[rIT"H|r 4 H|[rIT” H||r
> (M < A 5~ (A

=1 € € =1 €
16||H _ 4|H _
S <1+ !8/2HR||H HHR) ||€/2HR||I[ HHR (540)
200 H[r - 1o
< ———|I"TH||g < =||I" H||g.
< = I Hllx < ZIIT Hn

The inequality in (5.38) follows by taking the limit & — +o00 in (5.21). That is,

+oo
Oi 1o I
lg =1dllw <D ST Hillr,, < Z[[17H|[r. (5.41)
i=1
Now,
+oo
|Hoo — HOllg, < |H = Hllg + Y | Hi = Hiallr,
i=1
12||H°
= (1 Ty M) |H — H|ln
where we have used Lemma 5.4 and the fact that [|[I"H||g < |H — H°||s. O
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