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Abstract. We construct a renormalization operator acting on the space of analytic
Hamiltonians defined on T

∗Td, d ≥ 2, based on the multidimensional continued frac-
tions algorithm developed by the authors in [6]. We show convergence of orbits of the
operator around integrable Hamiltonians satisfying a non-degeneracy condition. This
in turn yields a new proof of a KAM-type theorem on the stability of diophantine
invariant tori.

1. Introduction

The connection between KAM and renormalization theories has been realized for
quite some time. Renormalization approach to KAM has several important advantages.
First of all, it provides a unified setting which allows to deal with both the cases of
smooth KAM-type invariant tori and non-smooth critical tori. Secondly, the proofs
based on renormalizations are conceptually very simple and give a different perspective
on the problem of small divisors. For the continuous-time situation, several KAM re-
sults for small-divisor problems in quasiperiodic motion have been obtained by studying
the stability of trivial fixed sets of renormalization operators (cf. e.g. [7, 12, 13, 10, 3]).
There was however a relevant restriction when dealing with multiple frequencies. Be-
cause renormalization methods rely fundamentally on the continued fractions expansion
of the frequency vector, the lack of a multidimensional version of continued fractions
was the reason for failing to replicate KAM in its full generality. This limitation was
recently overcome in [6] by adapting Lagarias’ algorithm [11] and deriving estimates for
multidimensional continued fractions (MCF) expansions of diophantine vectors.

We present here a further application of the multidimensional renormalization method
following [6] (for vector fields on the torus) and [9] (for skew-product flows over transla-
tions on the torus), illustrating once again the connection between KAM and renormal-
ization methods tackling quasiperiodic motion problems. Moreover, we hope that our
work could lead to a better understanding of the behaviour of renormalization around
critical fixed points. The only rigorous result in this direction is a computer-assisted
proof of the existence of such critical fixed point in the golden-mean d = 2 case [8].

Our present renormalization scheme is similar in spirit to Koch’s [7]. One of the
differences is that the (analytic) Hamiltonians considered in [7] are close to the integrable
(degenerate) Hamiltonian Rd ∋ y 7→ ω · y. So, due to the degeneracy condition there
are unstable directions for the trivial fixed point of renormalization, and thus the KAM
domain will correspond to the stable manifold. In our approach we deal with an extra
quadratic term in the integrable case which implies convergence under renormalization
on a ball. Moreover, the frequency vector ω ∈ Rd in [7] is assumed to be of a special
kind (known as Koch type, cf. [12]) corresponding to a zero Lebesgue measure set. In
our work the result on the stability of invariant tori is valid for any diophantine vector,
a full measure set. It is still a fundamental open problem to determine the largest set of
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frequencies for which the stability of KAM tori holds. We also expect that our methods
can be adapted in order to deal with Hamiltonians of class Ck.

Let B ⊂ Rd, d ≥ 2, be an open set containing the origin, and let H0 be a real-analytic
Hamiltonian function

H0(x,y) = ω · y +
1

2
⊤yQy, (x,y) ∈ T

d × B, (1.1)

with ω ∈ Rd and a real symmetric d × d matrix Q. H0 is said to be non-degenerate if
detQ 6= 0. We say ω ∈ Rd is Diophantine if there are constants β > 0 and C > 0 such
that

‖k‖d−1+β |k · ω| > C, k ∈ Z
d − {0}. (1.2)

In this paper we prove the following theorem.

Theorem 1.1. Suppose H0 is non-degenerate and ω is Diophantine. If H is a real

analytic Hamiltonian on Td × B sufficiently close to H0, then the Hamiltonian flow of

H leaves invariant a Lagrangian d-dim torus where it is analytically conjugated to the

linear flow φt(x) = x + tω on Td, t ≥ 0. The conjugacy depends analytically on H.

Sketch of the proof. Our proof of Theorem 1.1 is related to the one in [6] done in
the context of vector fields on Td. Hamiltonian vector fields involve more complicated
analysis since there is extra dynamics on a vertical direction (action) and we need to
preserve the symplectic nature of the problem. Our goal is to find an analytic embedding
Td → Td ×B that conjugates the Hamiltonian flow to the linear flow on the torus given
by ω.

We do not work directly with vector fields, instead we renormalize Hamiltonian func-
tions H(x,y) = H0(x,y) +F (x,y) where (x,y) ∈ Td ×B and F is a sufficiently small
analytic perturbation. Using a rescaling of time we may assume that ω = ( α

1 ) for
some Diophantine α ∈ Rd−1. The perturbation F is decomposed in a Taylor-Fourier
series F (x,y) =

∑
k,ν Fk,νy

ν1
1 . . . yνd

d e2πik·x where the sum is taken over k ∈ Zd and

νi ∈ N∪ {0}. By the analyticity of F , its modes decay exponentially as ‖k‖ → +∞ for
fixed ν.

Renormalization is an iterative scheme that at each step produces a new Hamiltonian.
Suppose that after the (n− 1)-th step the Hamiltonian is of the form

Hn−1(x,y) = ω(n−1) · y +
1

2
⊤yQn−1y + Fn−1(x,y) (1.3)

where ω(n−1) = ( α(n−1)

1
), α(n−1) is given by the continued fraction algorithm (see section

2) and Qn−1 is a symmetric matrix with non-zero determinant. Moreover, we assume
that Fn−1 only contains Taylor-Fourier resonant modes (said to be in I+

n−1), i.e. satisfy-

ing |ω(n−1) · k| ≤ σn−1‖k‖ or ‖ν‖ ≥ τn−1‖k‖ for some σn−1, τn−1 > 0. So, the n-th step
is defined by the following operations:

(1) Apply a linear operator corresponding to an affine symplectic transformation

given by (x,y) 7→ (T (n)−1
x, ⊤T (n)y + bn) for some fixed vector bn.

(2) Rescale the action in order to “zoom in” around the invariant torus.
(3) Rescale time (energy) to ensure that the frequency vector is of the form ω(n) =

( α(n)

1 ).
(4) Eliminate the constant mode of the Hamiltonian.
(5) Eliminate all the modes outside the resonant cone I+

n (thus avoiding dealing
with small divisors) by a close to the identity symplectomorphism.
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The first transformation above has a conjugate action k 7→ ⊤T (n)−1
k. It follows from

the hyperbolicity of T (n) that this transformation contracts I+
n−1 if σn−1 and τ−1

n−1 are
small enough. This significantly improves the analyticity domain in the x direction
which implies the decrease of the estimates for the corresponding modes. As a result,
all modes with k 6= 0 become smaller.

Besides the (trivial) case (k,ν) = (0, 0) which is dealt by operation (4) above, we
control the size of the remaining k = 0 modes in different ways. The case S :=

∑
i νi = 1

(corresponding to the linear term in the action y) is eliminated by a proper choice of
the affine parameter bn depending on Qn−1 and the perturbation. That is, bn is used to
eliminate an unstable direction related to frequency vectors. The quadratic term in the
action (S = 2) is included in the new symmetric matrix Qn which has again non-zero
determinant and becomes smaller due to the action rescaling. Finally, we show that the
action rescaling is also responsible for the decrease of the higher terms S ≥ 3.

The overall consequence of the iterative scheme just described is that it converges to
a limit set of Hamiltonians of the type y 7→ v · y. That is, the “limit” is a degenerate
linear function of the action, and from that we show the existence of an ω-invariant
torus for the initial Hamiltonian. To prove convergence we need to find proper choices of
σn and τn as well as of stopping times tn, which turns out to be possible for Diophantine
ω. Roughly, too small values of σn−1 and τ−1

n−1 make harder to eliminate modes as they

are “too” resonant. On the other hand, large values imply that T (n) does not contract
I+
n−1. Similarly, large tn−tn−1 improve the hyperbolicity of the matrices T (n) but worsen

the estimates on their norms and consequently enlarge the perturbation.
In section 2 we review the MCF algorithm contained in [6] and state estimates needed

for following sections. In section 3 we define the renormalization operator and iterate
it to show convergence to a trivial limit set. We are then able to prove Theorem 1.1 in
section 4. In section 5 we present a proof of Theorem 3.6 (similar to [7, 1]) that finds a
symplectomorphism capable of eliminating the non-resonant modes of a Hamiltonian.

2. Multidimensional continued fractions

For completeness we review here the ideas contained in [6].

2.1. Flow on homogeneous space. Denote by G = SL(d,R), Γ = SL(d,Z) and take a
fundamental domain F ⊂ G of the homogeneous space Γ\G (the space of d-dimensional
non-degenerate unimodular lattices). On F consider the flow:

Φt : F → F , M 7→ P (t)MEt, (2.1)

where

Et = diag(e−t, . . . , e−t, e(d−1)t) ∈ G

and P (t) is the unique family in Γ that keeps Φt(M) in F for every t ≥ 0.
Given ω = ( α

1 ) ∈ Rd, we are interested in the orbit under Φt of the matrix

Mω =

(
I α

0 1

)
. (2.2)

For this, consider a sequence of times

t0 = 0 < t1 < t2 < · · · → +∞ (2.3)

such that the matrices P (t) in (2.1) satisfy

P (n) := P (tn) 6= P (tn−1). (2.4)
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The sequence of matrices P (n) ∈ SL(d,Z) are the rational approximates of ω, called
multidimensional continued fractions expansion. In addition we define the transfer

matrices

T (n) = P (n)P (n−1)−1
. (2.5)

The flow of Mω taken at the time sequence is thus the sequence of matrices

M (n) = Φtn(Mω) = P (n)MωE
tn . (2.6)

Using some properties of the flow, the above can be decomposed (see [6]) into

M (n) =

(
I α(n)

0 1

)(
A(n) 0
⊤β(n) γ(n)

)
(2.7)

with γ(n) being the d-th component of the vector e(d−1)tnP (n)ω, A(n) is a (d−1)×(d−1)

real matrix and α(n),β(n) ∈ Rd−1.
Define ω(n) =

(
α(n)

1

)
, ω(0) = ω and, for n ∈ N,

ω(n) = γ(n)−1
M (n)

(
0
...
0
1

)
= λnP

(n)ω = ηnT
(n)ω(n−1), (2.8)

where

λn =
1

γ(n)
e(d−1)tn and ηn =

λn

λn−1
. (2.9)

Consider now the cone

K(n) = {ξ ∈ R
d : |ξ · ω(n)| ≤ σn‖ξ‖} (2.10)

for a given σn > 0. We are using the norm ‖ξ‖ =
∑d

i=1 |ξi|.
Let ‖ · ‖ denote the usual matrix norm

‖M‖ := sup
x6=0

‖Mx‖

‖x‖
. (2.11)

Notice that any A ∈ SL(d,Z) has ‖A‖ ≥ 1, as is the case of the norm of T (n), its inverse
and transpose.

Lemma 2.1 ([6]). If ξ ∈ K(n−1), then there is cd > 0 such that for all n ∈ N

‖ ⊤T (n)−1
ξ‖ ≤ cd

(
σn−1‖T

(n)−1
‖ + e−δtn‖M (n−1)‖ ‖M (n)−1

‖
)
‖ξ‖, (2.12)

where δtn = tn − tn−1.

2.2. Norm estimates for diophantine vectors. It is a well known fact that the sets
DC(β) of diophantine vectors with exponent β > 0 are of full Lebesgue measure [2].
On the other hand, the set DC(0) has zero Lebesgue measure.

Proposition 2.2 ([6]). Let ω ∈ DC(β), β ≥ 0. There are constants c1, c2, c3, c4, c5, c6, c7 >
0 such that, for all n ∈ N ∪ {0},

‖M (n)‖ ≤ c1 exp[(d− 1)θtn], (2.13)

‖M (n)−1
‖ ≤ c2 exp(θtn), (2.14)

‖P (n)‖ ≤ c3 exp[(d θ + 1 − θ)tn], (2.15)

‖P (n)−1
‖ ≤ c4 exp[(d− 1 + θ)tn], (2.16)

‖T (n)‖ ≤ c5 exp[(1 − θ)δtn + d θ tn], (2.17)

‖T (n)−1
‖ ≤ c6 exp[(d− 1)(1 − θ)δtn + d θ tn], (2.18)
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and

c7 exp

[
− θ

(
d2

1 − θ
− (d− 1)

)
tn

]
≤ |γ(n)| ≤ c1 exp[(d− 1)θtn], (2.19)

where δtn = tn − tn−1 and θ = β/(d+ β).

Proposition 2.3. Let ω ∈ DC(β), β ≥ 0. If ξ ∈ K(n−1), then there is cd > 0 for all

n ∈ N

‖ ⊤T (n)−1
ξ‖ ≤ cde

−(1−θ)δtn+dθtn−1
(
c6σn−1e

dδtn + c1c2
)
‖ξ‖, (2.20)

with θ = β/(d+ β).

Proof. The estimate follows from applying Proposition 2.2 to Lemma 2.1. �

3. Renormalization of Hamiltonian flows

3.1. Preliminaries. Consider the symplectic manifold T ∗Td with respect to the canon-
ical symplectic form

∑d
i=1 dyi ∧ dxi. As the cotangent bundle of Td is trivial, T ∗Td ≃

Td × Rd, we identify functions on T ∗Td with functions on Td × Rd. By lifting to the
universal cover, we consider functions from R2d into R and extend them to the complex
domain.

Let Ω be a neighbourhood of Rd × {0} in C2d. A Hamiltonian is a complex analytic
function H : Ω → C, Zd-periodic on the first coordinate, written on the form of a
Taylor-Fourier series

H(x,y) =
∑

(k,ν)∈I

Hk,νyνe2πik·x, (x,y) ∈ Ω, (3.1)

where I = Zd × (N ∪ {0})d, Hk,ν ∈ C and yν = yν1
1 . . . yνd

d .
Let the positive real numbers ρ and r be given in order to determine the domain

Dρ,r = Dρ ×Br, (3.2)

where

Dρ = {x ∈ C
d : ‖ Imx‖ < ρ/2π} and

Br = {y ∈ C
d : ‖y‖ < r},

(3.3)

for the norm ‖u‖ =
∑d

i=1 |ui| on Cd. Moreover, we will be using the norm of matrices

given by ‖Q‖ = maxj=1...d

∑d
i=1 |Qi,j|, where Qi,j are the entries of a d× d matrix Q.

Consider the Banach space Aρ,r of Hamiltonians defined on Ω = Dρ,r, which extend
continuously to the boundary and with finite norm

‖H‖ρ,r =
∑

(k,ν)∈I

|Hk,ν| r
‖ν‖ eρ‖k‖. (3.4)

Similarly, take a norm on the product space A2d
ρ,r = Aρ,r×· · ·×Aρ,r given by ‖(H1, . . . , H2d)‖ρ,r =∑2d

i=1 ‖Hi‖ρ,r. Using this we define the Banach space A′
ρ,r of Hamiltonians H ∈ Aρ,r

with finite norm
‖H‖′ρ,r = ‖H‖ρ,r + ‖∇H‖ρ,r.

A property that will be used several times in this paper is the Cauchy estimate: for
any δ > 0 we have

‖∂iH‖ρ,r ≤
2π

δ
‖H‖ρ+δ,r, H ∈ Aρ+δ,r, 1 ≤ i ≤ d,

‖∂jH‖ρ,r ≤
1

δ
‖H‖ρ,r+δ, H ∈ Aρ,r+δ, d+ 1 ≤ j ≤ 2d,

(3.5)



6 K. KHANIN, J. LOPES DIAS, AND J. MARKLOF

where ∂k denotes the partial derivative with respect to the kth argument. In particular

‖H‖′ρ,r ≤

(
1 +

2π + 1

δ

)
‖H‖ρ+δ,r+δ. (3.6)

The constant Fourier modes will be written by the projection

EF (y) =

∫

Td

F (x,y)dx =
∑

ν

F0,νyν, EνF (y) = F0,νyν. (3.7)

The space where EF lies is denoted by EAr and the natural induced norm is ‖ · ‖r.
Similarly, we define EA′

r with norm ‖ · ‖′r.
In the following we will use the notation A ≪ B to mean that there is a constant

C > 0 such that A ≤ CB.

Remark 3.1. We will be dealing with maps between Banach spaces over C with a
notion of analyticity stated as follows (cf. e.g. [5]): a map F defined on a domain is
analytic if it is locally bounded and Gâteux differentiable. If it is analytic on a domain,
it is continuous and Fréchet differentiable. Moreover, we have a convergence theorem
which is going to be used later on. Let {Fk} be a sequence of functions analytic and
uniformly locally bounded on a domain D. If limk→+∞ Fk = F on D, then F is analytic
on D.

3.2. Change of basis and rescaling. The following transformations leave invariant
the dynamics of the flow generated by a Hamiltonian, producing an equivalent system.
They consist of

• an affine symplectic transformation of the phase space,

Ln : (x,y) 7→ (T (n)−1
x, ⊤T (n)y + bn), (x,y) ∈ C

2d, (3.8)

for some bn ∈ Cd,
• a linear time (energy) change,

H 7→ ηnH (3.9)

where ηn is defined in (2.9),
• a linear action rescaling,

H 7→
1

µn
H(·, µn·) (3.10)

with a choice of µn > 0 to be specified later on,
• and the (trivial) elimination of the constant term

H 7→ (I − E0)H. (3.11)

Notice that EH ◦Rz = EH and

Rz ◦ Ln = Ln ◦RT (n)z (3.12)

with

Rz : (x,y) 7→ (x + z,y), z ∈ C
d. (3.13)

For n ∈ N, ρn−1 > 0 and r > 0, we are going to apply the transformations (3.8)-(3.11)
to Hamiltonians of the form

H(x,y) = ω(n−1) · y +
1

2
⊤yQn−1y + F (x,y), (x,y) ∈ Dρn−1,r, (3.14)
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where Qn−1 is a d×d symmetric matrix and F ∈ Aρn−1,r. We thus get new Hamiltonians
which are images under the map

Ln(H) = (I − E0)
ηn

µn
H ◦ Ln(·, µn·).

In order to simplify notations, we write

Φn(y) = µn
⊤T (n)y + bn. (3.15)

So, for any (x,y) ∈ L−1
n Dρn−1,r,

Ln(H)(x,y) =

= (I − E0)
ηn

µn

[
ω(n−1) · Φn(y) +

1

2
⊤Φn(y)Qn−1Φn(y) + F ◦ Ln(x, µny)

]
. (3.16)

By the decomposition F = (I − E)F + F0 and using the Taylor expansion of F0:

F0◦Φn(y) = F0(bn)+µn
⊤∇F0(bn) ⊤T (n)y+

µ2
n

2
⊤yT (n)D2F0(bn) ⊤T (n)y+Υn(y), (3.17)

with Υn(y) = O(‖y‖3), we get

Ln(H)(x,y) =ω(n) · y + ηn

[
⊤bnQn−1 + ⊤∇F0(bn)

]
⊤T (n)y

+
ηnµn

2
⊤yT (n)

[
Qn−1 +D2F0(bn)

]
⊤T (n)y

+
ηn

µn
Υn(y) +

ηn

µn
(I − E)F ◦ Ln(x, µny).

(3.18)

In order to “normalize” the (Fourier constant) linear term in y of ELn(H) by making
it equal to ω(n) · y, we choose bn inside the domain of ∇F0 such that

Qn−1bn + ∇F0(bn) = 0. (3.19)

The quadratic term is dealt considering a new symmetric d× d matrix Qn being

Qn = ηnµnT
(n)
[
Qn−1 +D2F0(bn)

]
⊤T (n). (3.20)

We can finally write

Ln(H)(x,y) = ω(n) · y +
1

2
⊤yQny + L̂n(F0)(y) + L̃n(F − F0)(x,y), (3.21)

where we have introduced the operator

L̂n : F0 7→
ηn

µn
Υn (3.22)

for the cubic and higher terms in y, and

L̃n : (I − E)F 7→
ηn

µn

(I − E)F ◦ Ln(·, µn·) (3.23)

for the non-constant Fourier modes. The above operators are defined in EAr and
(I − E)Aρn−1,r.

For a given γ > 0, denote by ∆γ the set of all H as in (3.14) such that ‖F0‖ρn−1,r < γ.

Lemma 3.2. If det(Qn−1) 6= 0 and

γn =
r2

16‖Q−1
n−1‖

, (3.24)

there is bn ∈ C1(∆γn ,C
d) such that, for all H ∈ ∆γn, bn = bn(H) satisfies (3.19) and

‖bn(H)‖ < (2/r)‖Q−1
n−1‖ ‖F0‖r <

r

8
. (3.25)
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Moreover, det(Qn) 6= 0 where Qn is given by (3.20), and

‖Q−1
n ‖ ≤

‖T (n)−1
‖ ‖ ⊤T (n)−1

‖

µn|ηn|(‖Q
−1
n−1‖

−1 − 16
r2‖F0‖r)

. (3.26)

In the case F0 is real-analytic and Qn−1 is real, bn(H) ∈ Rd and Qn is also real.

Proof. Consider the differentiable function F(H, b) = b+Q−1
n−1∇F0(b) defined on ∆γn ×

Br/2. Notice that F(H0
n−1, 0) = 0. Moreover, the derivative of F with respect to the

second argument,

D2F(H, b) = I +Q−1
n−1D

2F0(b), (H, b) ∈ ∆γn ×Br/2,

admits a bounded inverse because

‖D2F0‖r/2 = max
d+1≤j≤2d

‖∂j∇F0‖r/2

≤ (4/r)‖∇F0‖3r/4

≤ (16/r2)‖F0‖r

< ‖Q−1
n−1‖

−1

(3.27)

by the Cauchy estimate. Thus, the implicit function theorem implies the existence of a
C1 function bn : H 7→ bn(H) in a neighbourhood of H0

n−1 such that

F(H, bn(H)) = bn(H) +Q−1
n−1∇F0(bn(H)) = 0,

i.e. a solution of (3.19). Notice that for any H ∈ ∆γn the operator Id−F(H, ·) is
a contraction with a unique fixed point bn(H). Hence the domain of the C1 function
H 7→ b(H) is extendable to ∆γn and thus (3.25). Assuming F0 to be real-analytic and
Qn−1 with real entries, the same argument is still valid when considering Br/2 ∩Rd. So,
b(H) is real and Qn is a real symmetric matrix.

From (3.27),

‖Q−1
n−1D

2F0(bn(H))‖ < 1, H ∈ ∆γn .

Hence, A = Qn−1[I +Q−1
n−1D

2F0(bn(H))] is invertible. Moreover,

‖A−1‖ ≤ 1/(‖Q−1
n−1‖

−1 − ‖D2F0‖r/2). (3.28)

Now, Q−1
n = (ηnµn)

−1 ⊤T (n)−1
A−1T (n)−1

, thus (3.26). �

Lemma 3.3. If r < r′ and

µn <
r

4r′‖ ⊤T (n)‖
, (3.29)

then L̂n : EAr ∩ ∆γn → EA′
r′ and

‖L̂n‖ ≤ µ2
n|ηn|

(
1 +

1

2r′

)
(4r′ ‖ ⊤T (n)‖)3

r2(r − 4r′µn ‖ ⊤T (n)‖)
. (3.30)

Proof. Let H ∈ ∆γn , R = r
4r′µn‖⊤T (n)‖

> 1, y ∈ Br′ and the map

f : {z ∈ C : |z| ≤ R} → C
d

z 7→ F0(zµn
⊤T (n)y + bn(H)).

(3.31)

Hence Υn as in (3.17) can be written as

f(1) − f(0) −Df(0) −
1

2
D2f(0) =

1

2πi

∮

|z|=R

f(z)

z3(z − 1)
dz.
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Therefore,

‖Υn‖
′
r′ =

1

2π

∥∥∥∥
∮

|z|=R

f(z)

z3(z − 1)
dz

∥∥∥∥
′

r′

≤
1

R2(R− 1)
sup
|z|=R

‖F0(zµn
⊤T (n) · +bn(H))‖′r′.

Since ‖y‖ < r′, in view of (3.25),

sup
|z|=R

‖zµn
⊤T (n)y + bn(H)‖ ≤ Rµn‖

⊤T (n)‖ r′ + ‖bn(H)‖ < r/2,

and

sup
|z|=R

‖F0(zµn
⊤T (n) · +bn(H))‖′r′ ≤ ‖F0‖r/2 +Rµn ‖

⊤T (n)‖ ‖∇F0‖r/2

≤ ‖F0‖r/2 +
1

2r′
‖F0‖r ≤

(
1 +

1

2r′

)
‖F0‖r.

(3.32)

Thus, ‖Υn‖
′
r′ ≤ (1 + 1/2r′)[R2(R− 1)]−1‖F0‖r and

‖L̂n(F0)‖
′
r′ =

|ηn|

µn

‖Υn‖
′
r′ ≤

|ηn|

µn

(
1 +

1

2r′

)
(4r′|µn| ‖

⊤T (n)‖)3

r2(r − 4r′|µn| ‖ ⊤T (n)‖)
‖F0‖r.

�

3.3. Far from resonance modes. Given σn, τn > 0, we call far from resonance modes
with respect to ω(n) the Taylor-Fourier modes with indices in

I−n =
{
(k,ν) ∈ I : |ω(n) · k| > σn‖k‖, ‖ν‖ < τn‖k‖

}
. (3.33)

The resonant modes are the ones in I+
n = I − I−n . We also have the projections I+

n and
I−n over the spaces of Hamiltonians by restricting the Taylor-Fourier modes to I+

n and
I−n , respectively. The identity operator is I = I+

n + I−n .
Moreover, take

An = sup
k6=0,|ω(n)·k|≤σn‖k‖

‖ ⊤T (n+1)−1
k‖

‖k‖
. (3.34)

3.4. Analyticity improvement. The next lemma means that every Hamiltonian in
I
+
n−1Aρn−1,r ∩ ∆γn , i.e. a function on Dρn−1,r into C, is mapped by Ln into A′

ρ′n,r′. The
analyticity strip width is improved whenever An−1 is small enough. Lemma 3.5 will
“convert” this improvement into a norm reduction.

Lemma 3.4. If δ > 0, r < r′,

ρ′n ≤
ρn−1

An−1

− δ and τn ≥
2

log 2
(ρ′n + δ)‖ ⊤T (n)−1

‖, (3.35)

then L̃n as a map from (I+
n−1 − E)Aρn−1,r ∩ ∆γn to (I − E)A′

ρ′n,r′ is continuous with

‖L̃n‖ ≤

(
1 +

2π

δ
+

r

2r′2 log 2

)
|ηn|

µn
. (3.36)

Proof. Let F ∈ (I+
n−1 − E)Aρn−1,r ∩ ∆γn ,

E = {(0,ν) : ν ∈ (N × {0})d} and Jn = {k ∈ Z
d : |k · ω(n)| ≤ σn‖k‖}. (3.37)

Using Lemma 3.2 and (3.29) we have

ψn = µn‖
⊤T (n)‖ r′ + ‖bn(H)‖ ≤

r

4
+

2

r
‖Q−1

n−1‖ ‖F0‖r <
r

2
. (3.38)
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We want to find an upper bound on

‖F ◦ Ln(·, µn·)‖
′
ρ′n,r′

≤
∑

I+
n−1−E

(
1 + 2π‖ ⊤T (n)−1

k‖ + µn‖
⊤T (n)‖ ‖ν‖/r′

)
|Fk,ν|ψ

‖ν‖
n eρ′n‖

⊤T (n)−1
k‖

≤
∑

I+
n−1−E

(
1 +

2π

δ
eδ‖⊤T (n)−1

k‖ +
r

4r′2ξn
eξn‖ν‖

)
|Fk,ν|ψ

‖ν‖
n eρ′n‖

⊤T (n)−1
k‖, (3.39)

where we have used the inequality ζe−δ ζ ≤ δ−1 with ζ ≥ 0 and again a choice of µn

verifying (3.29). Here ξn = 1
2
log(r/ψn) >

1
2
log 2.

Consider separately the two cases corresponding to the definition of the resonance
cone I+

n−1. We deal first with the modes corresponding to k ∈ Jn−1 − {0}. By (3.34)
and (3.35) each one of these modes in (3.39) is bounded from above by

(
1 +

2π

δ
+

r

2r′2 log 2

)
r‖ν‖eρn−1‖k‖. (3.40)

Now, consider ‖ν‖ ≥ τn‖k‖ with k 6= 0, so that

‖ ⊤T (n)−1
k‖ ≤ τ−1

n ‖ ⊤T (n)−1
‖ ‖ν‖. (3.41)

These modes in (3.39) are estimated by
(

1 +
2π

δ
+

r

4r′2ξn
eξn‖ν‖

)(
r e−2ξn+(ρ′n+δ)‖⊤T (n)−1

‖/τn

)‖ν‖
≤

(
1 +

2π

δ
+

r

2r′2 log 2

)
r‖ν‖,

(3.42)
where we have used (3.35).

Finally, we get

‖F ◦ Ln(·, µn·)‖
′
ρ′n,r′ ≤

(
1 +

2π

δ
+

r

2r′2 log 2

)
‖F‖ρn−1,r,

and (3.36) follows from (3.23). �

Let 0 < ρ′′n ≤ ρ′n and the inclusion

In : A′
ρ′n,r′ → A′

ρ′′n,r′, H 7→ H|Dρ′′n,r′. (3.43)

The norm of the k 6= 0 modes can be improved by the application of In.

Lemma 3.5. If φn ≥ 1 and

0 < ρ′′n ≤ ρ′n − log(φn), (3.44)

then

‖In(I − E)‖ ≤ φ−1
n . (3.45)

The proof is immediate and will be omited.

3.5. Elimination of far from resonance modes. The theorem below states the
existence of a symplectomorphism isotopic to the identity that cancels the far from
resonance modes of a Hamiltonian close to the quadratic integrable Hamiltonian

H0
n : y 7→ ω(n) · y +

1

2
⊤yQny. (3.46)
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Given ρn, ν > 0, denote by Vε the open ball in A′
ρn+ν,r′ centred at H0

n with radius
ε > 0. We define also

εn =
σ2

n(min
{
1, ν

2π
, r′ − r

}
)2

12(4‖ω(n)‖ + dσn)r′(2π + 1)2(1 + 2π + τn+1
r′

)2
. (3.47)

and

ϕn = 1 +

√

3r′
4‖ω(n)‖ + dσn

εn

. (3.48)

Theorem 3.6. Let r < r′ and σn > 2r′‖Qn‖. Then there exist analytic maps G : Vεn →
A2d

ρn,r where G(H) is a symplectomorphism, and U : Vεn → I+
nAρn,r given by U(H) =

H ◦ G(H), such that I−nU(H) = 0 and

‖G(H) − Id ‖′ρn,r ≤
1

εn

‖I
−
nH‖ρn,r

‖U(H) −H0
n‖ρn,r ≤ϕn‖H −H0

n‖
′
ρn+ν,r′.

(3.49)

Moreover, if H is real-analytic, then G(H) is real-analytic.

A proof of this theorem is included in section 5.

Lemma 3.7. In the conditions of Theorem 3.6, if x ∈ Rd and H ∈ Vǫn, then

G(H ◦Rx) = R−1
x ◦ G(H) ◦Rx (3.50)

on Dρn,r.

Proof. If g = G(H) is a solution of I−nH ◦ g = 0 in Dρn,r, then g̃ = R−1
x ◦ G(H) ◦ Rx

solves the same equation for H̃ = H ◦Rx, i.e. I−H̃ ◦ g̃ = 0 in Dρn,r. �

3.6. Convergence of renormalization. For a resonance set I+
n and µn > 0, the nth

step renormalization operator is defined to be

Rn = Un ◦ In ◦ Ln ◦ Rn−1 and R0 = U0,

where Un is as in Theorem 3.6 at the step n. Notice that if

H+(y) = ω · y +
1

2
⊤yQy + v · y,

then

Rn(H+) = ω(n) · y +
1

2
λnχn

⊤yP (n)Q ⊤P (n)y

for every v ∈ Cd, where

χn =

n∏

i=1

µi. (3.51)

This means that the renormalizations eliminate the direction corresponding to linear
terms in y. From the previous sections the map Rn on its domain of validity is analytic
by construction. In addition, whenever a Hamiltonian H is real-analytic, the same is
true for Rn(H).

Let r′ > r > 0, ρ0 > 0 and fix a sequence σn < 1, n ∈ N, and σ0 > 2r′‖Q‖. To
complete the specification of the resonant modes and of εn in Theorem 3.6, take τ0 = 1
and

τn =
2ρ0‖

⊤T (n)−1
‖

Bn−1 log 2
(3.52)
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according to Lemma 3.4, with

Bn =

n∏

i=0

Ai. (3.53)

Notice that the An’s depend on σn.
Consider also the constants ν and δ as they appear in Theorem 3.6 and Lemma 3.4,

respectively.
We now define the non-increasing sequence Θ0 = 1,

Θn = min

{
Θn−1,

σ2
n

(4r′‖Q‖)2

n∏

i=1

26ζi
|ηi| ‖T (i)‖2‖ ⊤T (i)‖2

,

ε3
n∏n

i=1 ‖T
(i)−1

‖3
,

n∏

i=1

min{|ηi|
−3, |ηi|

2}

224ζ3
i ‖T

(i)−1
‖2‖ ⊤T (i)−1

‖6

}
≤ 1, (3.54)

with

ζn =

(
1 +

1

2r′

)(
r′

r

)3

ϕn‖
⊤T (n)‖3 > 1.

In order to use the results obtained earlier connected with the building blocks of the
renormalization operator, and to get convergence of the renormalization (in the theorem
below), we choose

ρn =
1

Bn−1

[
ρ0 −

n−1∑

i=0

Bi log (φi+1) − (δ + ν)
n−1∑

i=0

Bi

]
, (3.55)

where

φn = max

{
1, 2

(
1 +

2π

δ
+

r

2r′2 log 2

)
ϕn|ηn|Θn−1

µnΘn

}
≥ 1,

µn =

(
Θn

28ζn max{1, |ηn|}Θn−1

)1/2

≤ 1.

(3.56)

Recall that φn is our choice for Lemma 3.5. Moreover, our choice of µn implies that

µn ≤
1

24ζ
1/2
n

≤
1

24

(
r

r′‖ ⊤T (n)‖

)3/2

≤
r

8r′‖ ⊤T (n)‖
, (3.57)

so Lemma 3.3 holds.
To have ρn positive for all n we need to study the following function of ω ∈ Rd

associated to the choice of σn:

B(ω) =

+∞∑

i=0

Bi log (φi+1) + (δ + ν)

+∞∑

i=0

Bi. (3.58)

It is simple to see that B depends on the multidimensional continued fraction expansion
of ω through the matrices T (n) and the scalars ηn. The remaining dependences are on
fixed constants and on Q, but these turn out to be irrelevant as we will be uniquely
interested in the convergence of the series in (3.58). In this sense, we can look at B as
only depending on the arithmetics of ω. As we will see in the following part of this
section, for diophantine vectors ω we can find a sequence σn for which B(ω) converges.

Notice that if B(ω) converges, then Bn → 0 as n → +∞. Also, τn ≫ B−1
n−1 → ∞

by (3.52) and εn ≪ τ−2
n → 0 by (3.47). Hence, Θn ≪ ε3

n → 0 by the third term in
min{. . . } of (3.54).
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We denote

Hn = Rn(H)

and associate the sequence H0
n of quadratic integrable Hamiltonians given by (3.46),

where Qn is defined by (3.20).

Theorem 3.8. Suppose that det(Q) 6= 0,

B(ω) < +∞, (3.59)

and ρ > B(ω) + ν. There exists c,K > 0 such that if H ∈ Aρ,r′ and ‖H −H0‖ρ,r′ < c,
then H is in the domain of Rn and

‖Hn −H0
n‖ρn,r ≤ KΘn‖H −H0‖ρ,r′, n ∈ N ∪ {0}. (3.60)

Proof. Let ρ0 = ρ− ν > B(ω). Hence, by the definition of ρn, there is R > 0 satisfying
ρn > RB−1

n−1 for all n ∈ N.
If c ≤ ε0 we use Theorem 3.6 to get R0(H) ∈ I

+
0 Aρ0,r with

‖H0 −H0‖ρ0,r ≤ KΘ0‖H −H0‖ρ,r′

for some K > 0. Take Q0 = Q.
Now, for n ∈ N assume that Hn−1 ∈ I

+
n−1Aρn−1,r. Suppose that

‖Hn−1 −H0
n−1‖ρn−1,r ≤ KΘn−1‖H −H0‖ρ,r′,

‖Qn−1‖ ≤ ‖Q‖
n−1∏

i=1

3

2
µi|ηi| ‖T

(i)‖ ‖ ⊤T (i)‖,

‖Q−1
n−1‖ ≤ ‖Q−1‖

n−1∏

i=1

2µ−1
i |ηi|

−1‖T (i)−1
‖ ‖ ⊤T (i)−1

‖.

(3.61)

So, for c small enough, using the last term in (3.54) we get

‖Q−1
n−1‖ ≪

Θ
1/2
n−1

Θn−1

n−1∏

i=1

25ζ
1/2
i ‖T (i)−1

‖ ‖ ⊤T (i)−1
‖max

{
1

|ηi|1/2
,

1

|ηi|

}
≤

r2

32cKΘn−1
. (3.62)

Thus, Lemma 3.2 is valid and as a consequence ‖bn(Hn−1)‖ < r/8.
After performing the operators Ln and In, we want to estimate the norm of the result-

ing Hamiltonians. The constant and non-constant Fourier modes are dealt separately
in

InLn(H) = H0
n + L̂n(EHn−1) + InL̃n(I − E)(Hn−1). (3.63)

For the former we use Lemma 3.3 and for the latter Lemmas 3.4 and 3.5. So,

‖L̂n(EHn−1)‖
′
r′ ≤ 27K

(
1 +

1

2r′

)(
r′

r

)3

µ2
n|ηn| ‖

⊤T (n)‖3Θn−1‖H −H0‖ρ,r′

≤
K

2ϕn
Θn‖H −H0‖ρ,r′.

(3.64)

Furthermore, φn yields

‖InL̃n(I − E)(Hn−1)‖
′
ρ′′n,r′ ≤ K

(
1 +

2π

δ
+

r

2r′2 log 2

)
µ−1

n φ−1
n |ηn|Θn−1‖H −H0‖ρ,r′

≤
K

2ϕn

Θn‖H −H0‖ρ,r′.

(3.65)
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Moreover, assuming c to be small enough, we estimate (3.20) using (3.27), ‖Qn−1‖
−1 ≤

‖Q−1
n−1‖, (3.62) and the second inequality in (3.61) to obtain

‖Qn‖ ≤ µn|ηn| ‖T
(n)‖ ‖ ⊤T (n)‖‖Qn−1‖(1 + 16r−2cKΘn−1‖Qn−1‖

−1)

≤ ‖Q‖
n∏

i=1

3

2
µi|ηi| ‖T

(i)‖ ‖ ⊤T (i)‖ ≤
σn

4r′
,

(3.66)

where the last inequality comes from the second term in (3.54). By (3.26) and again
(3.62),

‖Q−1
n ‖ ≤

‖T (n)−1
‖ ‖ ⊤T (n)−1

‖‖Q−1
n−1‖

µn|ηn|(1 − 16r−2cKΘn−1‖Q
−1
n−1‖)

≤ ‖Q−1‖
n∏

i=1

2µ−1
i |ηi|

−1‖T (i)−1
‖ ‖ ⊤T (i)−1

‖.

(3.67)

The Hamiltonian InLn(Hn−1) is inside the domain of Un since for c small enough
ϕ−1

n cKΘn < εn and ‖Qn‖ < σn/(2r
′). The result follows from (3.49). �

Remark 3.9. The above can be generalised for a small analyticity radius ρ by consider-

ing a sufficiently large N and applying the above theorem to H̃ = UNLN . . .U1L1U0(H),
where H is close enough to H0. We recover the large strip case since ρN is of the order
of B−1

N−1. It remains to check that ρN > B(ω(N)) + ν. This follows from the fact that

B(ω(N)) = B−1
N−1[B(ω) − BN (ω)] where BN(ω) is the sum of the first N terms of B(ω)

so that BN(ω) → B(ω) as N → +∞.

Lemma 3.10. If ω = ( α
1 ) ∈ Rd is diophantine, then (3.59) is verified.

Proof. To show (3.59) it is only necessary to check that we can find sequences σn

and tn for which the series
∑
Bn| log |ηn+1||,

∑
Bn log ‖T (n+1)‖,

∑
Bn log ‖T (n+1)−1

‖,∑
Bn log ‖ω(n+1)‖,

∑
Bn| log σn+1| and

∑
Bn| log Θn+1| converge.

Let us set, for each n ∈ N,

tn = (1 + ξ)n and σn = e−aδtn ,

where positive constants ξ and a will be chosen in the following and δtn = tn − tn+1.
We shall assume that ξ is large enough that

ξ

(
d−

a

1 + ξ

)
≥ log

c1c2
c6

. (3.68)

So, σn−1 exp(dδtn) ≥ c1c2/c6 as in Proposition 2.3. Hence,

An−1 ≪ e−αδtn , (3.69)

with

α =
d(ξ − β)

ξ(d+ β)
−

(
d−

a

1 + ξ

)
(3.70)

which is positive if a > d(1 + ξ)[1 − 1/(d+ β)]. Thus,

Bn =

n∏

i=0

Ai ≪ Cne−αtn+1 , (3.71)

where C is some positive constant. Clearly,
∑
Bn <∞.
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From (2.8) we have ‖ω(n)‖ ≤ ‖M (n)‖ |γ(n)|−1. Thus, using (2.13) and (2.19) we have

‖ω(n)‖ ≪ exp

[
dβ(1 + ξ)

ξ
δtn

]
. (3.72)

Now, using (2.9) and the bounds (2.19), (2.17) and (2.18) we get

‖T (n)‖ ≪ exp

[
d(1 + ξ)(β + 1)

ξ(d+ β)
δtn

]

‖T (n)−1
‖ ≪ exp

[
d(1 + ξ)(d− 1 + β)

ξ(d+ β)
δtn

]

|ηn| ≪ exp

[
d(1 + ξ)

ξ

(
d− 1

d+ β
+ β

)
δtn

]
.

(3.73)

Finally,

log

n∏

i=1

‖T (i)‖, log

n∏

i=1

‖T (i)−1
‖, | log

n∏

i=1

|ηi|| ≪ tn

log
n∏

i=1

‖ω(i)‖, | log
n∏

i=1

σi|, | log
n∏

i=1

Bi−1| ≪ tn

(3.74)

so that | log Θn| ≪ tn.
Since Bn decays exponentially with tn+1 and log φn+1 grows at most linearly, the series

(3.59) converges. �

4. Construction of the invariant torus

Here we will always assume to be in the conditions of section 3.6. We use Theorem 3.8
to determine the existence of an ω-invariant torus for the flow of analytic Hamiltonians
H close enough to H0 (Theorem 1.1). This follows from the construction of an analytic
conjugacy between the linear flow on Td of rotation vector ω and an orbit of H .

Let the set ∆ be given by

∆ = {H ∈ Aρ,r′ : ‖H −H0‖ρ,r′ < c}, (4.1)

which is contained in the domain of Rn for all n ∈ N∪{0}. Given H ∈ ∆, Hn ∈ I+
nAρn,r.

It is simple to check that

Hn =
λn

χn

[(I − E0)(H ◦ g0 ◦ L
µ1

1 ◦ g1 ◦ · · · ◦ L
µn
n )] ◦ gn

=
λn

χn

{
(I − E0)H ◦ g0 ◦ [P1(H) ◦ g1 ◦ P1(H)−1]◦

· · · ◦ [Pn−1(H) ◦ gn−1 ◦ Pn−1(H)−1] ◦ Pn(H)
}
◦ gn.

(4.2)

Here, gk = Gk(Lk(Hk−1)) is given by Theorem 3.6 at the kth step and

Lµk

k : (x,y) 7→ (T (k)−1
x,Φk(Hk−1)(y)), (4.3)

where Φk(Hk−1)(y) = µk
⊤T (k)y + bk(Hk−1). In addition, we have the conformally

symplectic map

Pn(H) = Lµ1

1 · · ·Lµn
n : (x,y) 7→

(
P (n)−1

x,Φ1(H) . . .Φn(Hn−1)(y)
)
, n ≥ 1, (4.4)

and we set P0(H) = Id. Notice that

Φ1(H) . . .Φn(Hn−1)(y) = χn
⊤P (n)y + vn(H), (4.5)
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with

vn(H) = b1(H) +
n∑

i=2

χi−1
⊤P (i−1)bi(Hi−1).

For n ≥ 1 define

an(H) = lim
m→+∞

Φn(Hn−1) . . .Φm(Hm−1)(0)

= bn(Hn−1) +

+∞∑

i=n+1

µn . . . µi−1
⊤T (n) . . . ⊤T (i−1)bi(Hi−1)

(4.6)

if it converges. If that is the case,

a(H) = a1(H) = lim
n→+∞

vn(H) (4.7)

and

a(H) − vn(H) = χn
⊤P (n)an+1(H). (4.8)

Lemma 4.1. The maps an : ∆ → Br/2 are well-defined and analytic, taking any real-

analytic H into Rd.

Proof. From Lemma 3.2 we obtain ‖bk(Hk−1)‖ < r/8 for any k ∈ N. Thus, by (3.57),

µn . . . µi−1‖
⊤T (n) . . . ⊤T (i−1)bi(Hi−1)‖ ≤

r

8

( r

8r′

)i−n

, (4.9)

where 1 ≤ n ≤ i − 1. Hence, (4.6) converges and each an(H) is well-defined in Cd. In
case H is real, an(H) ∈ Rd. The maps H 7→ an(H) are analytic since the convergence
is uniform. Moreover, (4.6) can be estimated using (4.9),

‖an(H)‖ ≤
r

8
+
r

8

r
8r′

1 − r
8r′

<
r

2
.

�

Lemma 4.2. There is an open ball B centred at H0 in ∆ such that, if H ∈ B, we can

find sequences Rn, rn > 0 satisfying: R−1 = ρ, r−1 = r′,

Rn + 2πKΘ2/3
n ‖H −H0‖ρ,r′ ≤ Rn−1 ≤

ρn−1

‖P (n−1)‖
, (4.10)

rn +KΘ2/3
n ‖H −H0‖ρ,r′ ≤ rn−1 ≤

χn−1r

2‖ ⊤P (n−1)−1
‖
, (4.11)

n ≥ 0, and

lim
n→+∞

R−1
n Θ2/3

n = 0. (4.12)

Proof. Let ρ∗ = min ρn. Since χn is decreasing and ‖P (n)‖ ≤
∏n

i=1 ‖T
(n)‖ (similar

relations hold for the transpose and inverse matrices), it is enough to check (using the
last term in (3.54)) that

Θ2/3
n ≪ min

{
λnρ∗

n∏

i=1

‖T (i)‖−1, χn

n∏

i=1

‖ ⊤T (i)−1
‖−1

}

for some 0 < λ < 1 by taking Rn = c1λ
−nΘ

2/3
n and rn = c2Θ

2/3
n with small constants

c1, c2 > 0. Thus, the inequalities (4.10) and (4.11) hold whenever we take a sufficiently
small bound on ‖H −H0‖ρ,r. The limit (4.12) is now immediate. �
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Let the vertical translation

Vz : (x,y) 7→ (x,y + z), (4.13)

for any z ∈ Cd. For a given H ∈ ∆, define the norm ‖X‖n = ‖X ◦Va(H)‖Rn,rn whenever
X ◦ Va(H) ∈ A2d

Rn,rn
.

Now, consider the isotopic to the identity analytic symplectomorphism

Wn(H) = Pn(H) ◦ Gn(Ln(Hn−1)) ◦ Pn(H)−1 (4.14)

on Pn(H)Dρn,r with n ≥ 0 and H ∈ ∆. In particular, Wn(H0) = Id. Notice that for H
real-analytic, Wn(H) is real-analytic.

Lemma 4.3. Wn is an analytic map on B such that, if H ∈ B,

Wn(H) : Va(H)(Dρn,rn) → Va(H)(Dρn−1,rn−1)

and there is K ′ > 0 verifying

‖Wn(H) − Id ‖n ≤ K ′Θ2/3
n ‖H −H0‖ρ,r′. (4.15)

Proof. For H ∈ ∆ and (x,y) ∈ DRn,rn,

‖ ImP (n)x‖ < ‖P (n)‖Rn/2π ≤ ρn/2π,

‖Φ−1
n (Hn−1) . . .Φ

−1
1 (H)(y + a(H))‖ = ‖χ−1

n
⊤P (n)−1

(y + a(H) − vn(H))‖

≤ χ−1
n ‖ ⊤P (n)−1

‖rn + ‖an+1(H)‖ < r.

(4.16)

Therefore, Pn(H)−1 ◦ Va(H)(DRn,rn) ⊂ Dρn,r. Moreover, using (3.49),

‖Wn(H) − Id ‖n = ‖P̂n(H) ◦ [Gn(InLn(Hn−1)) − Id] ◦ Pn(H)−1 ◦ Va(H)‖Rn,rn

≤ ε−1
n ‖P̂n(H)‖ ‖InLn(Hn−1) −H0

n‖ρn,r′

≤ K ′Θ2/3
n ‖H −H0‖ρ,r′,

(4.17)

where P̂n(H) corresponds to the linear part (x,y) 7→ (P (n)−1
x, χn

⊤P (n)y) of Pn(H)

which has norm bounded by ‖P̂n(H)‖ ≤ ‖P (n)−1
‖ + χn‖

⊤P (n)‖.
Now, for (x,y) ∈ DRn,rn and H ∈ B,

‖π1 ImWn(H) ◦ Va(H)(x,y)‖ ≤ ‖ Im(π1Wn(H) ◦ Va(H)(x,y) − x)‖ + ‖ Im x‖

< ‖Wn(H) − Id ‖n +Rn/2π < Rn−1/2π,

‖π2Wn(H) ◦ Va(H)(x,y) − a(H)‖ ≤ ‖π2Wn(H) ◦ Va(H)(x,y) − y − a(H)‖ + ‖y‖

< ‖Wn(H) − Id ‖n + rn < rn−1.

So, Wn(H) : Va(H)(DRn,rn) → Va(H)(DRn−1,rn−1). �

Define the analytic map Γn on B satisfying Γn(H) : Va(H)(DRn,rn) → Va(H)(Dρ,r′),

Γn(H) = W0(H) ◦ · · · ◦Wn(H) (4.18)

with H ∈ B. We then rewrite (4.2) as

H ◦ Γn(H) =
χn

λn
Hn ◦ Pn(H)−1 + E(H), (4.19)

where E(H) represents a constant (irrelevant) term. Since each Wn(H) is symplectic,
thus Γn(H) is symplectic and H ◦ Γn(H) is canonically equivalent to the Hamiltonian
Hn. In particular, if Hn = H0

n for some n, there is an ω-invariant torus in the phase
space of Hn. We are interested in the general case, Hn −H0

n → 0 as n→ +∞.
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Lemma 4.4. There is c > 0 such that for H ∈ B

‖Γn(H) − Γn−1(H)‖n ≤ cΘ2/3
n ‖H −H0‖ρ,r′.

Proof. For each k = 0, . . . , n− 1, consider the transformations

Gk(z,H) =(Wk(H) − Id) ◦ (Id +Gk+1(z,H)) +Gk+1(z,H),

Gn(z,H) =z(Wn(H) − Id),

with (z,H) ∈ {z ∈ C : |z| < 1 + dn} × B, where we have c′ > 0 such that

dn =
c′

Θ
2/3
n ‖H −H0‖ρ,r′

− 1 > 0.

If ‖Gk+1(z,H)‖n ≤ (Rk − Rn)/2π, then Gk is well-defined as an analytic map and

‖Gk(z,H)‖n ≤ ‖Wk(H) − Id ‖k + ‖Gk+1(z,H)‖n.

An inductive scheme shows that
‖Gn(z,H)‖n ≤(Rn−1 − Rn)/2π,

‖Gk(z,H)‖n ≤

n−1∑

i=k

‖Wi(H) − Id ‖i + |z| ‖Wn(H) − Id ‖n

≤(Rk−1 −Rn)/2π.

By Cauchy’s formula

‖Γn(H) − Γn−1(H)‖n = ‖G0(1, H) −G0(0, H)‖n

=

∥∥∥∥
1

2πi

∮

|z|=1+dn/2

G0(z,H)

z(z − 1)
dz

∥∥∥∥
n

,

and

‖Γn(H) − Γn−1(H)‖n ≤
2

dn
sup

|z|=1+dn/2

‖G0(z,H)‖n

≪ Θ2/3
n ‖H −H0‖ρ,r′.

�

Consider the Banach space C1
per(R

d,C2d) of C1 functions Zd-periodic, endowed with
the norm

‖f‖C1 = max
k≤1

max
x∈Rd

‖Dkf(x)‖.

Our goal is to find parametrizations of invariant tori of the type θ 7→ (θ, a(H)) + f(θ).

Lemma 4.5. There exist C > 0, an open ball B′ ⊂ B centred at H0 and an analytic

map Υ on B′ such that, for every H ∈ B′, Υ(H) = limn→+∞ Γn(H)|{y=a(H)} is an

embedding Rd → C2d, Υ(H) − (Id, a(H)) ∈ C1
per(R

d,C2d) and

‖Υ(H) − (Id, a(H))‖C1 ≤ C‖H −H0‖ρ,r′. (4.20)

If H ∈ B′ is real-analytic, then Υ(H) : Rd → R2d.

Proof. For each H ∈ B, by the first inequality in (3.5),

‖[Γn(H) − Γn−1(H)](·, a(H))‖C1 ≤ max
k≤1

sup
x∈Dρn/2

‖Dk[Γn(H)(x, a(H)) − Γn−1(H)(x, a(H))]‖

≤
4π

Rn
‖Γn(H) − Γn−1(H)‖n

(4.21)
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which is estimated using (4.12). Hence, Γn(H)(·, a(H)) − (Id, a(H)) converges in the
Banach space C1

per(R
d,C2d), and (4.20) holds. The convergence of Γn is uniform in B,

thus Υ is analytic. If H is sufficiently close to H0, Υ(H) is in fact an injective immersion
(embedding) as the space of embeddings is closed for the C1 norm and Υ(H) is close to
(Id, a(H)). Finally, for H real-analytic we have Υ(H)(Rd) ⊂ R2d in view of the similar
property for each Wn(H). �

The Hamiltonian vector field of a Hamiltonian H is XH = J∇H , where J : (x, y) 7→
(y,−x). The next lemma shows the invariance of the torus defined by Υ(H) which

corresponds to the linear vector field θ̇ = ω.

Lemma 4.6. For H ∈ B′, we have on Rd

XH ◦ Υ(H) = D(Υ(H)) ω. (4.22)

Proof. Since Γn(H) is a symplectomorphism, we have for x ∈ Rd,

Yn(x) = XH ◦ Γn(H) ◦ Va(H)(x, 0) −D(Γn(H)) ◦ Va(H)(x, 0)XH0(x, 0)

= [D(Γn(H)) ◦ Va(H)XH◦Γn(H)◦Va(H)−H0 ](x, 0).
(4.23)

Hence,

‖Yn(x)‖ ≤ ‖D(Γn(H))(x, a(H))‖ ‖∇[H ◦ Γn(H) ◦ Va(H) −H0](x, 0)‖. (4.24)

In order to estimate the above we first recall (4.19) to show that

∇[H ◦ Γn(H) ◦ Va(H) −H0](x, 0) =
χn

λn
∇[(Hn −H0

n) ◦ Pn(H)−1 ◦ Va(H)](x, 0)

+
1

λnχn

⊤[a(H) − vn(H)]P (n)−1
Qn

⊤P (n)−1
.

(4.25)

Notice that by induction we get

1

λnχn
P (n)−1

Qn
⊤P (n)−1

= Q+

n−1∑

i=0

1

λiχi
P (i)−1

D2F
(i)
0 (bi+1(Hi))

⊤P (i)−1
. (4.26)

Since
∑n−1

i=1 (χi|λi|)
−1‖P (i)−1

‖ ‖ ⊤P (i)−1
‖Θi ≪ 1 and by (4.6) and (4.8)

‖a(H) − vn(H)‖ ≤ χn‖
⊤P (n)‖ ‖an+1(H)‖ ≪ Θ2/3

n , (4.27)

the last term in (4.25) is estimated from above by Θ
2/3
n . Moreover, the first term in the

rhs of (4.25) is bounded times a constant by

1

|λn|
‖ ⊤P (n)−1

‖ ‖Hn −H0
n‖ρn,r ≪ Θ2/3

n . (4.28)

Finally, from the convergence of Γn and

‖DΓn(H)(x, a(H))‖ ≪
1

Rn

‖Γn(H)‖n ≪
1

Rn

, (4.29)

we find that ‖Yn(x)‖ converges uniformly to 0 as n→ +∞ because of (4.12). �

Lemma 4.7. If H ∈ B′ and x ∈ Rd, then

Υ(H ◦Rx) = R−1
x ◦ Υ(H) ◦ R̂x (4.30)

where R̂x : z 7→ z + x is a translation on Cd.
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Proof. For each n ∈ N, (3.12) implies that Pn(H ◦ Rz) = Pn(H) and we know that
Pn(H) ◦R−1

P (n)z
= R−1

z ◦ Pn(H), z ∈ Cd. So, from Lemma 3.7,

Wn(H ◦Rx) = Pn(H) ◦ Gn(LnRn−1(H ◦Rx)) ◦ Pn(H)−1

= R−1
x ◦Wn(H) ◦Rx.

(4.31)

Thus, Γn(H◦Rx) = R−1
x ◦Γn(H)◦Rx and (4.30) follows using the convergence of Γn. �

The flow generated by XH is denoted by φt
H taken at time t ≥ 0. Hence,

φt
H0 |Td×{0} = R̂ωt.

We prove below the existence of an invariant torus T for H close to H0, i.e. an analytic
conjugacy between φt

H |T and R̂ωt.

Theorem 4.8. Let D ⊂ Rd be an open ball about the origin. If H ∈ Cω(Td × D) is

sufficiently close to H0, then there exists a Cω embedding γ : Td → Td ×D such that

φt
H ◦ γ = γ ◦ R̂ωt, t ≥ 0, (4.32)

and T = γ(Td) ≃ Td is a submanifold homotopic to {y = 0}. Furthermore, the map

H 7→ γ is analytic.

Proof. The lift H̃ to Rd×D of H is assumed to have a unique analytic extension to Dρ,r′.

Consider the real-analytic Hamiltonian G = H̃ ∈ Aρ,r′. Suppose that G is close enough
to H0 such that G ∈ B′ and G ◦Rz ∈ B′ for η > 0 and z ∈ Dη. Then, γ = Υ(G)|[0,1)d,
which is C1 and homotopic to (Id, a(G)), verifies (4.32). This follows from (4.22) and
the equivalent equation

d

dt

∣∣∣
t=0

(φt
H ◦ γ) =

d

dt

∣∣∣
t=0

(γ ◦ R̂ωt),

which we integrate for initial condition φ0
H = R̂0 = Id.

We now want to extend analytically γ to a complex neighbourhood of its domain.
Take γ̃(z) = Rz ◦ Υ(G ◦ Rz)(0), z ∈ Dη. The maps z 7→ G ◦ Rz and H 7→ Υ(H)
are analytic and C1

per(R
d,C2d) ∋ g 7→ g(0) is bounded. As γ̃ : Dη → C2d involves their

composition, it is analytic and Zd-periodic. From (4.30), for any x ∈ Rd, we have

γ̃(x) = Υ(G) ◦ R̂x(0) = Υ(G)(x) = γ(x).

Finally, since Υ is analytic, the same is true for the map H 7→ γ. �

As a quasiperiodic invariant torus T is always Lagrangian (cf. [4]), we have now
concluded the proof of Theorem 1.1.

5. Elimination of modes

Here we present a proof of Theorem 3.6. It is similar to related methods appearing
in e.g. [7, 1]. As we have fixed n, we will not include it in our notations.

Let R = (R1, R2) and R′ = (R′
1, R

′
2) be such that R > R′ > 0 componentwise. We will

be interested on the set GR′ of analytic symplectomorphisms g : DR′ → DR satisfying
g − Id ∈ A2d

R′ and

‖g − Id ‖R′ < δ = min{(R1 − R′
1)/2π,R2 − R′

2}.

We use the notation {·, ·} for the usual Poisson bracket associated to J : (x,y) 7→
(y,−x). In the following R − δ stands for R − δ(1, 1) and π2 : (x,y) 7→ y is the pro-
jection on the second component. The lemma below constructs a symplectomorphism
g generated by a function G, and gives several related estimates to be used later.
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Lemma 5.1. Let 0 < ξ ≤ 1
2
. If G ∈ A′

R′ and ‖G‖′R′ < ξδ/(2π + 1), then there is a

unique analytic symplectomorphism g : DR′−2δ → C2d such that ‖g − Id ‖R′−2δ < ξδ and

g = Id+J∇G ◦ ĝ, (5.1)

where ĝ(x,y) = (x, π2g(x,y)), (x,y) ∈ DR′−2δ. Moreover, for any H ∈ AR′

‖H ◦ g‖R′−2δ ≤ ‖H‖R′

‖H ◦ g −H‖R′−2δ ≤ 2ξ‖H‖R′

‖H ◦ g −H − {H,G}‖R′−2δ ≤ 2ξ2‖H‖R′

(5.2)

and the maps G 7→ g and G 7→ H ◦ g are analytic.

Proof. Define the map T : g 7→ Id +J∇G◦ ĝ on the open ball B in A2d
R′−2δ centred at the

identity and with radius ξδ. It is simple to check that T (B) ⊂ B, in particular a fixed
point T (g) = g ∈ B is symplectic. We now show that T is a contraction on B and thus
its unique fixed point is the map we are looking for. In fact, whenever g ∈ B we obtain

‖DT (g)‖ ≤ ‖D∇G ◦ ĝ‖R′−2δ ≤ ‖D∇G‖R′−δ

≤
2π + 1

δ
‖∇G‖R′ ≤

2π + 1

δ
‖G‖′R′ < ξ.

(5.3)

For the estimates in (5.2) (the first is now immediate) we introduce the differentiable
function

f : {z ∈ C : |z| < ζ} → AR′

z 7→ H ◦ (Id +zJ∇G(Id +z(ĝ − Id)))
(5.4)

where ζ = 1/ξ ≥ 2. Cauchy’s integral formula yields that

‖H ◦ g −H‖R′−2δ = ‖f(1) − f(0)‖R′−2δ

≤
1

2π

∮

|z|=ζ

‖f(z)‖R′−2δ

|z(z − 1)|
dz

≤
1

ζ − 1
sup
|z|=ζ

‖f(z)‖R′−2δ ≤ 2ξ‖H‖R′.

(5.5)

and

‖H ◦ g −H − {H,G}‖R′−2δ = ‖f(1) − f(0) − f ′(0)‖R′−2δ

≤
1

2π

∮

|z|=ζ

‖f(z)‖R′−2δ

|z2(z − 1)|
dz

≤
1

ζ(ζ − 1)
sup
|z|=ζ

‖f(z)‖R′−2δ ≤ 2ξ2‖H‖R′.

(5.6)

By the implicit function theorem the maps G 7→ g and G 7→ H ◦ g are analytic. �

Lemma 5.2. Let σ > 2R2‖Q‖, ε
′ > 0 and H ∈ A′

R such that

‖H −H0‖R < ε′ ≤
σδ

(2π + 1)[1 + 2π + (τ + 1)/R2]
. (5.7)

Then there is G ∈ I−A′
R′ such that

I
−(H + {H,G}) = 0 and ‖G‖′R′ ≤

δ

(2π + 1)ε′
‖I

−H‖R′ . (5.8)

Moreover, the map H 7→ G is analytic.
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Proof. Consider the linear operator associated to H :

F : I
−A′

R′ → I
−AR′ , K 7→ I

−{H,K}. (5.9)

It is well-defined since

‖I
−{H,K}‖R′ ≤ ‖∇H‖R′‖∇K‖R′

≤ ‖H‖′R′‖K‖′R′ .

We will show that F−1 : I−AR′ → I−A′
R′ is bounded and

‖F−1‖ <
1

πR2σ
(2π+1)R2+τ+1

− 22π+1
δ
ε′

≤
δ

(2π + 1)ε′
. (5.10)

A solution of (5.8) is simply given byG = F−1(−I−H). Therefore, ‖G‖′R′ ≤ ‖F−1‖ ‖I−H‖R′.
We start by decomposing any Hamiltonian H = H0 + F as

H(x,y) =
∑

k

Hk(y) e2πik·x with Hk(y) =
∑

ν

Hk,νyν.

Write D0 = ∇2H
0 · ∇1, with ∇1 and ∇2 standing for the derivatives with respect to x

and y. The definition of F in (5.9) yields

F(K) = I
−(F̂ −D0)K = −

(
I − I

−F̂D−1
0

)
D0K,

where F̂ (K) = {F,K}. If the inverse of F exists is given by

F−1 = −D−1
0

(
I − I

−F̂D−1
0

)−1

. (5.11)

The map D−1
0 : I−AR′ → I−A′

R′ is linear and given by

D−1
0 W (x,y) =

∑

k∈Zd−{0}

Wk(y)

2πi(k · ∇2H0(y))
e2πik·x, W ∈ I

−AR′ .

For each k ∈ I−, using (3.33) and ‖Q‖ < σ/(2R2) thus |k ·Qy/k · ω| < 1/2,

Wk(y)

k · ω
(
1 + k·Qy

k·ω

) =
Wk(y)

k · ω

∑

n≥0

(
−

k ·Qy

k · ω

)n

, (5.12)

we get the estimate
∥∥∥∥

Wk

k · ∇2H0

∥∥∥∥
R2

≤
∑

n≥0

∑

ν

|Wk,ν|R
‖ν‖
2 ‖Q‖nRn

2

σn+1‖k‖

<
∑

n≥0

∑

ν

|Wk,ν|R
‖ν‖
2

σ‖k‖

(
1

2

)n

=
2

σ‖k‖
‖Wk‖R2.

(5.13)

Similarly, we find the bound
∥∥∥∥

∇2Wk

k · ∇2H0

∥∥∥∥
R2

≤
∑

ν

2‖ν‖ |Wk,ν|R
‖ν‖−1
2

σ‖k‖
<

2τ

σR2
‖Wk‖R2 . (5.14)

Finally, ∥∥∥∥
WkQk

(k · ∇2H0)2

∥∥∥∥
R2

<
2

σR2‖k‖
‖Wk‖R2. (5.15)
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It is now immediate to see that

‖D−1
0 W‖R′ ≤

2

2πσ
‖W‖R′, and ‖∇1(D

−1
0 W )‖R′ ≤

2

σ
‖W‖R′.

Moreover,

∇2

(
Wk(y)

k · ∇2H0(y)

)
=

∇2Wk(y)

k · ∇2H0(y)
−

Wk(y)Qk

(k · ∇2H0(y))2

which implies

‖∇2(D
−1
0 W )‖R′ <

τ + 1

πσR2
‖W‖R′ . (5.16)

Hence,

‖D−1
0 ‖ <

2

σ

(
1 +

1

2π
+
τ + 1

2πR2

)
.

As F̂ : I−A′
R′ → AR′ with ‖F̂‖ ≤ 2 ‖∇F‖R′ ≤ 22π+1

δ
‖F‖R (by Cauchy’s estimate),

‖I
−F̂ D−1

0 ‖ <
4

σ

(
1 +

1

2π
+
τ + 1

2πR2

)
‖∇F‖R′ < 1,

and ∥∥∥∥
(
I − I

−F̂ D−1
0

)−1
∥∥∥∥ <

[
1 −

4

σ

(
1 +

1

2π
+
τ + 1

2πR2

)
‖∇F‖R′

]−1

.

Thus F−1 exists given by (5.11) and the estimate (5.10) on its norm follows immediately.
�

Consider the pairs R = (ρn + ν, r′) and R′ = (ρn, r), σ > 2r′‖Q‖ and H0 = H as
given in Theorem 3.6. We are going to iterate the procedure indicated in the previous
lemmas. Let a sequence of Hamiltonians be given by

Hk = Hk−1 ◦ gk, k ∈ N,

where Gk and gk are determined for Hk−1 by Lemmas 5.2 and 5.1, respectively. In
addition, denote by

g(k) = g1 ◦ · · · ◦ gk (5.17)

the composition of all symplectomorphisms up to the kth-step so that Hk = H ◦ g(k).
In order to determine the right domains of Hk, Gk and gk, define the sequences

Rk = Rk−1 − 4δk = R− 4

k∑

i=1

δi, (5.18)

with R0 = R and

δk =
1

2k+2
min

{
1,

ν

2π
, r′ − r

}
≤

1

2k
. (5.19)

So, limn→+∞Rk ≥ R′ componentwise. From now on, assume that

ε′ = min

{
1

2
‖H0‖R,

σδ1
(2π + 1)(1 + 2π + τ+1

r′
)

}
. (5.20)

Lemma 5.3. If for every k ∈ N, ‖I−Hk−1‖Rk−1
≤ ε′/2 and

‖Gk‖
′
Rk−1−δk

<
δk

(2π + 1)ε′
‖I

−Hk−1‖Rk−1
,
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then gk(DRk
) ⊂ DRk−1

and

‖g(k) − Id ‖Rk
≤

k∑

i=1

δi
ε′
‖I

−Hi−1‖Ri−1

‖g(k) − g(k−1)‖Rk
≤

1

ε′
‖I

−Hk−1‖Rk−1
.

(5.21)

Proof. Recall Lemma 5.1 for ξ = ‖I−Hk−1‖Rk−1
/ε′ and check that

‖gk − Id ‖Rk
≤ ‖gk − Id ‖Rk−1−3δk

<
δk
ε′
‖I

−Hk−1‖Rk−1

and Rk + δk < Rk−1 componentwise. Now,

g(k) − Id =
k−1∑

i=1

(gi − Id) ◦ gi+1 ◦ · · · ◦ gk + gk − Id . (5.22)

Thus,

‖g(k) − Id ‖Rk
≤

k∑

i=1

‖gi − Id ‖Ri
≤

k∑

i=1

δi
ε′
‖I

−Hi−1‖Ri−1
. (5.23)

Furthermore, as

g(k) − g(k−1) = (g(k−1) − Id) ◦ gk − (g(k−1) − Id) + (gk − Id) (5.24)

we get

‖g(k) − g(k−1)‖Rk
≤(‖Dg(k−1) − I‖Rk

+ 1) ‖gk − Id ‖Rk

≤
δk
ε′
‖I

−Hk−1‖Rk−1

(
2π + 1

4δk

k−1∑

i=1

δi
ε′
‖I

−Hi−1‖Ri−1
+ 1

)

≤
1

ε′
‖I

−Hk−1‖Rk−1
.

(5.25)

�

Notice that since ε′ ≤ 1
2
‖H0‖R, we have

ε′ ≤ ‖H0‖R − ε′ ≤ ‖H‖R ≤ ‖H0‖R + ε′ (5.26)

and also
1

2
‖H0‖R ≤ ‖H‖R ≤

3

2
‖H0‖R. (5.27)

Lemma 5.4. For any k ∈ N, if ‖I−H‖R ≤ ε′2/(8‖H‖R), then

‖I
−Hk‖Rk

≤

(
4‖H‖R

ε′2

)2k−1

‖I
−H‖2k

R ≤
ε′

2
, (5.28)

‖Hk −Hk−1‖Rk
≤

4‖H‖R

ε′
‖I

−Hk−1‖Rk−1
, (5.29)

‖Hk‖Rk
≤ 2‖H‖R. (5.30)

Proof. We will prove the above inequalities by induction. The generating Hamilton-
ian G1 given by Lemma 5.2 and the symplectomorphism g1 by Lemma 5.1 satisfy
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‖G1‖
′
R0−δ1

≤ δ1‖I−H‖/[(2π + 1)ε′], ‖g1 − Id ‖R0−3δ1 < ‖I−H‖Rδ1/ε
′ and I−H1 = I−H ◦

g1 − I−(H + {H,G1}). Hence,

‖I
−H1‖R1 ≤ ‖H ◦ g1 −H − {H,G1}‖R1 ≤ 2

(
‖I−H‖R

ε′

)2

‖H‖R. (5.31)

and

‖H1 −H‖R1 ≤ ‖∇H‖R1‖g1− Id ‖R1 ≤
2π + 1

4ε′
‖I

−H‖R‖H‖R ≤
2

ε′
‖I

−H‖R‖H‖R. (5.32)

Thus, (5.28) and (5.29) are valid for k = 1 and so is (5.30) because ‖H1‖R1 ≤ ‖H1 −
H‖R1 + ‖H‖R.

Now, assume that the inequalities are true for k. Under these conditions, Lemma 5.2
guarantees the existence of Gk+1 so that

‖Gk+1‖
′
Rk+1

≤
δk+1

(2π + 1)ε′
‖I

−Hk‖Rk
(5.33)

and Lemma 5.1 yields gk+1. Therefore, I−Hk+1 = I−Hk ◦ gk+1 − I−(Hk + {Hk, Gk+1})
and

‖I
−Hk+1‖Rk+1

≤ ‖Hk ◦ gk+1 −Hk − {Hk, Gk+1}‖Rk+1

≤ 2

(
‖I−Hk‖Rk

ε′

)2

‖Hk‖Rk

≤

(
4‖H‖R

ε′2

)2k+1−1

‖I
−H‖2k+1

R .

(5.34)

Similarly,

‖Hk+1 −Hk‖Rk+1
≤‖∇Hk‖Rk+1

‖gk+1 − Id ‖Rk+1

≤
2π + 1

4δk+1ε′
‖I

−Hk‖Rk
δk+1‖Hk‖Rk

≤
4

ε′
‖I

−Hk‖Rk
‖H‖R.

(5.35)

Finally, making use of the above inequality,

‖Hk+1‖Rk+1
≤ ‖H‖R +

k+1∑

i=1

‖Hi −Hi−1‖Rk+1

≤ ‖H‖R +
4‖H‖R

ε′

k+1∑

i=1

‖I
−Hi−1‖Ri−1

≤ ‖H‖R + ‖H‖R

k+1∑

i=1

(
4‖H‖R‖I−H‖R

ε′2

)2i−1

≤

(
1 +

k+1∑

i=1

1

22i−1

)
‖H‖R < 2‖H‖R.

(5.36)

�

Theorem 3.6 will now be a consequence of the result below noticing that ‖H0‖R ≤
R2‖ω‖ + (dR2

2/2)‖Q‖ ≤ R2(‖ω‖ + dσ/4).
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Theorem 5.5. If

‖H −H0‖R < ε =
ε′2

12‖H0‖R

≤
ε′2

8‖H‖R

, (5.37)

then there exists g = limk→+∞ g(k) ∈ GR′ such that I−H ◦ g = 0 on DR′. Furthermore,

the maps G : H 7→ g and U : H 7→ H ◦ g are analytic, and

‖g − Id ‖R′ ≤
1

ε
‖I

−H‖R (5.38)

‖H ◦ g −H0‖R′ ≤

(
1 +

√
12‖H0‖R

ε

)
‖H −H0‖R. (5.39)

Proof. Lemmas 5.3 and 5.4 imply that the sequence g(k) converges to a map g : DR′ →
DR which is analytic and symplectic, and H∞ = limk→+∞Hk = H ◦ g. Moreover,
I−H◦g = I−H∞ = 0. Since the convergence is uniform, the maps H 7→ g and H 7→ H◦g
are analytic.

Notice that
+∞∑

i=1

(
4‖H‖R‖I−H‖R

ε′2

)2i−1

≤
4‖H‖R‖I−H‖R

ε′2
+

+∞∑

i=1

(
4‖H‖R‖I−H‖R

ε′2

)2i

≤

(
1 +

16‖H‖R

3ε′2
‖I

−H‖R

)
4‖H‖R

ε′2
‖I

−H‖R

≤
20‖H‖R

3ε′2
‖I

−H‖R ≤
1

ε
‖I

−H‖R.

(5.40)

The inequality in (5.38) follows by taking the limit k → +∞ in (5.21). That is,

‖g − Id ‖R′ ≤

+∞∑

i=1

δi
ε′
‖I

−Hi−1‖Ri−1
≤

1

ε
‖I

−H‖R. (5.41)

Now,

‖H∞ −H0‖Rk
≤ ‖H −H0‖R +

+∞∑

i=1

‖Hi −Hi−1‖Ri

≤

(
1 +

√
12‖H0‖R

ε

)
‖H −H0‖R,

where we have used Lemma 5.4 and the fact that ‖I−H‖R ≤ ‖H −H0‖R. �
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[10] S. Kocić. Renormalization of Hamiltonians for diophantine frequency vectors and KAM tori. Non-

linearity, 18:2513–2544, 2005.
[11] J. C. Lagarias. Geodesic multidimensional continued fractions. Proc. London Math. Soc., 69:464–

488, 1994.
[12] J. Lopes Dias. Renormalization of flows on the multidimensional torus close to a KT frequency

vector. Nonlinearity, 15:647–664, 2002.
[13] J. Lopes Dias. Brjuno condition and renormalization for Poincaré flows. Discrete Contin. Dyn.
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