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Abstract. We introduce a renormalization group framework for the study of quasiperiodic skew
flows on Lie groups of real or complex n×n matrices, for arbitrary Diophantine frequency vectors

in Rd and dimensions d,n. In cases where the group component of the vector field is small, it is

shown that there exists an analytic manifold of reducible skew systems, for each Diophantine
frequency vector. More general near-linear flows are mapped to this case by increasing the

dimension of the torus. This strategy is applied for the group of unimodular 2×2 matrices,

where the stable manifold is identified with the set of skew systems having a fixed fibered
rotation number. Our results apply to vector fields of class Cγ , with γ depending on the

number of independent frequencies, and on the Diophantine exponent.

1. Introduction and main results
Let G be a Lie subgroup of GL(n,C) or GL(n,R), and denote by A the corresponding Lie
algebra. We consider vector fields on Λ = Td ×G of the form

X(q, y) =
(
ω, f(q)y

)
, f(q) ∈ A , (q, y) ∈ Λ . (1.1)

Here, Td denotes the d-torus, with T = R/(2πZ). Such a vector field X determines a linear
flow on the torus, q(t) = q0 + tω, and a linear evolution equation on G,

ẏ(t) = f(q0 + tω)y(t) , y(0) = y0 , (1.2)

whose coefficients are periodic or quasiperiodic functions of t, depending on the frequency
vector ω. If t 7→ Φt

X(q0) denotes the solution of (1.2), for the case where y0 ∈ G is the
identity, then the flow ΨX associated with the vector field (1.1) can be written as

Ψt
X(q0, y0) =

(
q0 + tω,Φt

X(q0)y0
)
, (q0, y0) ∈ Λ , t ∈ R . (1.3)

Such flows are commonly referred to as skew flows. Classical Floquet theory shows that if
t 7→ q(t) is periodic, and in particular if d = 1, then the system is reducible. To be more
precise, the vector field (1.1) is said to be reducible if there exists a function V : Td → G,
such that

Φt
X(q) = V (q + tω)−1etCV (q) , t ∈ R , q ∈ Td , (1.4)

for some constant matrix C ∈ A. If ω ∈ Rd is fixed, we will also refer to f as being
reducible. Another characterization of reducibility can be given by considering the map
V : Λ → Λ, defined by

V(q, y) =
(
q, V (q)y

)
. (1.5)
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The pushforward of X = (ω, f .) under this map is given by the equation(
V∗X

)
(q, y) =

(
ω, (V?f)(q)y

)
, V?f = (DωV + V f)V −1 , (1.6)

where Dω = ω · ∇. Modulo smoothness assumptions, (1.4) is equivalent to V?f ≡ C.
More recent results concern the reducibility of skew systems with rationally indepen-

dent frequencies ω1, . . . , ωd , where t 7→ q(t) is quasiperiodic. For such systems, solving
V?f ≡ C leads to small divisor problems, as in classical KAM theory. Results based on
KAM type methods have been obtained in the case where G = SL(2,R) [1,2,3], motivated
by the study of the one-dimensional Schrödinger equation with quasiperiodic potential,
and for compact Lie groups [4,5]. In particular, Eliasson’s result [3] for G = SL(2,R) guar-
antees reducibility for analytic vector fields of the form (1.1), with ω Diophantine, and
with the fibered rotation number (associated with a rotation in G) being either rational
or Diophantine with respect to ω. The vector field is required to be close to constant, but
the smallness condition does not depend on further arithmetic properties of the rotation
number. By contrast to these results, there are also generic examples of non-reducible
systems [8,3,9].

Another approach to the reducibility problem involves renormalization methods. For
discrete time cocycles over rotations by an irrational angle α, and for G = SU(2), Rychlik
introduced in [8] a renormalization scheme based on a rescaling of first return maps, using
the continued fractions expansion of α. Later, Krikorian improved the method in [6,7],
where he was able to prove global (non-perturbative) results for compact C∞ cocycles. A
non-compact case was treated in [10]. In the context of flows, renormalization techniques
were used in [11] to prove a local normal form theorem for analytic skew systems with a
Brjuno base flow. Unlike the KAM methods, the renormalization approach has so far been
restricted to skew systems with a one-dimensional base map or two-dimensional base flow.

In this paper, we introduce a new renormalization group approach, which allows us to
extend the analysis of near-constant skew flows in several directions. One of its character-
istics is that fibered rotation numbers are included in the renormalization procedure. This
leads naturally to multi-frequency problems, and to the analysis of skew systems over tori
of arbitrary dimensions, which we handle by making use of the multidimensional continued
fractions algorithm introduced in [19]. In addition, we reduce the smoothness condition
on the vector field, by requiring only a finite degree of differentiability.

We focus on cases where ω ∈ Rd is Diophantine, in the sense that

|ω · ν| ≥ C‖ν‖1−d−β , ν ∈ Z \ {0} , (1.7)

for some constants β,C > 0. It is well known that for any fixed β > 0, the measure of the
set of vectors ω that violate (1.7) approaches zero as C tends to zero [20]. The constants
β,C > 0 are considered fixed in the rest of this paper.

Our vector fields are assumed to be of class Cγ , with γ larger than some constant
γ0(β) specified below. Given any γ ≥ 0, define Fγ to be the Banach space of integrable
functions f : Td → GL(n,C), for which the norm

‖f‖γ = ‖f0‖+
∑

0 6=ν∈Zd

‖fν‖(2‖ν‖)γ , fν = (2π)−d

∫
Td

f(q)e−iν·qdq , (1.8)
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is finite. Here, and in what follows, we use the standard `2 norm on the spaces Cm, and
the corresponding operator norm for m ×m matrices. Define Ef to be the torus-average
f0 of a function f ∈ Fγ . The set of functions in Fγ that take values in G or A will be
denoted by Gγ or Aγ , respectively.

Our first result describes a class of vector fields X = (ω, f .) that are reducible to the
trivial vector field (ω, 0). Define

γ0(β) = (d+ β)
[
1 + 2β + 2

√
β
[
1 + β − 1/(d+ β)

] ]
− 1 . (1.9)

Theorem 1.1. Given γ ≥ γ2 > γ0(β), there exists an open neighborhood B of the origin
in Fγ , and for each Diophantine unit vector ω satisfying (1.7) a manifold M in B, such
that the following holds. M is the graph of an analytic map M : (I − E)B → EB, which
vanishes together with its derivative at the origin, and which takes values in Aγ when
restricted to Aγ . Every function f on M is reducible to zero. The corresponding change
of coordinates V belongs to Fε and depends analytically on f , where ε = γ − γ2 . If in
addition, f ∈ Aγ , then V belongs to Gε , and if f is the restriction to Td of an analytic
function, then so is V .

Here, a function ψ defined on M is said to be analytic if ψ ◦M is analytic on the
domain of M .

This theorem can also be applied to vector fields Y = (w, g .), whose group component
g is close to a constant matrix A, but not necessarily small. But w and A have to satisfy
a certain Diophantine condition. More specifically, assume that A ∈ A admits a spectral
decomposition A = κ · J = κ1J1 + . . .+ κ`J` , where κ is some vector in R`, and where the
Jj are linearly independent mutually commuting matrices in A, such that t 7→ exp(tJj) is
2π-periodic. The vector κ will be referred to as the frequency vector of A.

In order to see how Theorem 1.1 can be applied to g ≈ A, we start with a skew system
Y = (w, g .) on Tm ×G, and then take d = m+ `. Clearly, if g ≡ A = κ · J , then the flow
for Y is equivalent to the flow for X = (ω, 0), with ω = (w, κ). More generally, if g −A is
small but not necessarily zero, we consider the function

f(q) = e−r·Jg(x)er·J − κ · J , q = (x, r) ∈ Tm × T` . (1.10)

If Y is regarded as a vector field on Λ by identifying w and x with (w, 0) and (x, 0),
respectively, then the above relation between g and f can be written as

g = Θ?f , Θ(q, y) =
(
q, er·Jy

)
. (1.11)

In order to simplify the discussion, assume now that ω has length one. If ω = (w, κ) is
Diophantine of type (1.7) and g belongs to the manifold Θ?M, then the flow forX = (ω, f .)
can be trivialized with a change of coordinates V , as described in Theorem 1.1. The same
now holds for g. However, the corresponding change of variables W (q) = V (q)e−r·J is not
of the desired form, since it still depends on the coordinates rj . But as we will see,

Φt
Y (x) = W (x+ tω)−1W (x) = V (x+ tw)−1etCV (x) , (1.12)
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for some matrix C ∈ A with frequency vector κ, provided that V is differentiable. What
remains to be shown, in specific cases, is that the space of functions of the type (1.10) has
a reasonable intersection with the manifold M.

This procedure can be characterized as transforming some circular motion on G into
motion on an extended torus. Our motivation for this approach is to try to treat all
frequencies of the system in a unified way. In the case discussed below, it also has the
advantage that the analysis of near-constant skew flows Y = (ω, g .) can be reduced to a
purely local analysis near f ≡ 0.

Consider now G = SL(2,R). In this case, there is a natural rotation number that can
be associated with a skew flow, due to the fact that the fundamental group of G is Z (as
for higher dimensional symplectic groups). To this end, consider the flow for Y = (w, g .)
on the product of Td−1 with R2 \ {0},

v̇(t) = g(x0 + tw)v(t) , v(0) = v0 . (1.13)

Denote by α(t) the angle between v(t) and some fixed unit vector u0 , and let α0 = α(0).
Then the lift of this angle to R evolves according to the equation

α̇(t) = −
〈
e−α(t)JJg(x0 + tw)eα(t)Ju0 , u0

〉
, α(0) = α0 , (1.14)

where 〈. , .〉 denotes the standard inner product on R2. Here, and in the remaining part of
this section, J =

[
0 −1
1 0

]
. If the components of w are rationally independent, then we can

define the so-called fibered rotation number of Y ,

%(Y ) = lim
t→∞

α(t)
t

. (1.15)

As was shown in [23], this limit exists for all x0 ∈ Td−1 and α0 ∈ R, and it is independent
of these initial conditions.

From the definition of Θ, we see that %(Y ) = κ if and only if %(X) = 0. Thus, we may
restrict our analysis to skew flows with fibered rotation number zero. Theorem 1.1 deals
with precisely such flows. However, the functions (1.10) are of a particular type, and more
can be said in this case.

In the following theorem, G = SL(2,R), and A is the corresponding Lie algebra of
real traceless 2 × 2 matrices. Denote by A0

γ the subspace of functions g in Aγ with the
property that g(q) = g(x), for all q = (x, r) in Td−1 × T1.

Theorem 1.2. Given γ ≥ γ2 > γ0(β) and a > 0, the following holds for some R > 0.
Consider a constant skew system (w,A) on Td−1 × G, for a matrix A ∈ A that has
purely imaginary eigenvalues, say ±κi. Assume that ω = (w, κ) satisfies the Diophantine
condition (1.7), and that ‖A‖ ≤ a|κ|‖ω‖. Then there exists an open neighborhood B0

of the constant function x 7→ A in A0
γ , containing a ball of radius R centered at this

function, such that for any g ∈ B0 , the one-parameter family λ 7→ g + λA contains a
unique member in B0 , say g′, whose associated skew flow has a fibered rotation number
κ. If γ − γ2 = ε ≥ 1, then g′ is reducible to a constant C ∈ A, as described by equation



Renormalization and Reducibility of Diophantine Skew Flows 5

(1.12), via a change of coordinates V ∈ Gε . Furthermore, the function g′, and (if ε ≥ 1)
the quantities C and V , depend real analytically on g.

This theorem is proved by first performing a simple change of coordinates g 7→ L−1gL
with L ∈ G, such that L−1AL = κJ , followed by a constant scaling Y 7→ cY of the
resulting skew system, which converts (w, κ) to a unit vector. This is where the condition
‖A‖ ≤ a|κ|‖ω‖ comes in. After that, the task is reduced via the map Θ to the study of
vector fields X = (ω, f .) with f of the type (1.10). Thus, in view of Theorem 1.1, it suffices
to prove (besides real analyticity) that the family λ 7→ f + λJ intersects the manifold M
in exactly one point, that %(X) = 0 implies f ∈ M, and that (1.12) holds if f belongs to
M.

Our analysis of skew systems near (ω, 0), including the proof of Theorem 1.1, is based
on the use of renormalization group (RG) transformations. These transformations are
defined in the next section. As described in more detail in Section 4, each Diophantine
vector ω determines, via a multidimensional continued fractions expansion [19], a sequence
of matrices Tn ∈ SL(d,Z). The n-th step RG transformation Nn involves a change of vari-
ables (q, y) 7→ (Tnq, y), and another change of variables of the form (1.5), which eliminates
certain “nonresonant modes”. This is similar in spirit to the RG transformations used in
[11-19]. The details of the elimination procedure can be found in Section 3. Each transfor-
mation Nn has f ≡ 0 as a fixed point, and the stable/unstable subspaces of DNn(0) are
the same for all n. Thus, it is possible to define and construct a “stable manifold” (the
manifold M described in Theorem 1.1) for the sequence {Nn}. This construction is car-
ried out in Section 5, by extending our RG transformations to parametrized families. The
reducibility of functions f ∈M is proved in Section 6, by combining the partial reductions
(elimination of nonresonant modes) from the individual RG steps. The remaining results
concerning G = SL(2,R) are proved in Section 7.

2. Renormalization
We start by describing a single RG step. A unit vector ω ∈ Rd, and a matrix T in SL(d,Z)
are assumed to be given, subject to certain conditions that will be described below. The
matrix T defines a map T : Λ → Λ,

T (q, y) =
(
T (q), y

)
, (2.1)

and the pushforward of a vector field (1.1) under this map is given by(
T∗X

)
(q, y) =

(
Tω, (T?f)(q)y

)
, T?f = f ◦ T−1 . (2.2)

For every positive τ < 1, define K(τ) to be the set of all vectors in Rd that are contracted
by a factor ≤ τ under the action of S = (T ∗)−1. Here, T ∗ denotes the transpose of T .
Given a fixed value for this contraction factor τ , to be specified later, the “resonant” part
I+
f of a function f ∈ Fγ , and its “nonresonant” part I−f , are defined by the equation

I
±
f(q) =

∑
ν∈I±

fνe
iν·q , (2.3)
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where I
+

= K(τ) ∩ Zd and I
−

= Zd \ I+
. As one would expect (see the lemma below), the

resonant part of a function f ∈ Fγ is contracted under the action of T?.
In order to simplify notation, we will drop the subscript γ from now on, unless two

different choices of γ are being considered at the same time.

Lemma 2.1. If f ∈ F satisfies I−f = Ef = 0, then ‖T?f‖ ≤ τγ‖f‖.

The proof follows immediately from the definitions:

‖T?f‖ =
∑

0 6=ν∈I+

‖fν‖(2‖Sν‖)γ ≤
∑

0 6=ν∈I+

‖fν‖(2τ‖ν‖)γ = τγ‖f‖ .

The complementary property of the nonresonant modes is that they can easily be
eliminated via a change of variables of the form (1.5). To be more precise, we assume
that the constant τ can be (and has been) chosen in such a way that K(τ/2) contains the
orthogonal complement of ω. Under this assumption, we will show in Section 3 that if
f ∈ F is sufficiently close to zero, then it is possible to find Uf ∈ F close to the identity,
such that

I
−
(Uf)?f = 0 . (2.4)

By construction, the map f 7→ Uf is analytic, and Uf belongs to G whenever f ∈ A. The
renormalized function N (f) and the renormalized vector field R(X) are now defined by
the equation

N (f) = η−1T?(Uf)?f , R(X) = η−1T∗(Uf)∗X , (2.5)

where η is the norm of Tω, so that the torus component of R(X) is again a unit vector.
The corresponding flow is given by

Φt
R(X) =

[
Uf(.+ η−1tω)Φη−1t

X U−1
f

]
◦ T−1 . (2.6)

In what follows, the RG transformation N is regarded as a map from an open domain
in F to F . But it should be kept in mind that its restriction to A takes values in A. An
explicit bound on the map f 7→ Uf leads to the following.

Theorem 2.2. Let f = C+h, with C constant and Eh = 0. Assume that ‖C‖ < σ/6 and
‖h‖ < 2−9σ, with σ satisfying 2σ‖S‖ < τ . Then

N (f) = η−1
[
C + h̃

]
,

∥∥h̃∥∥ ≤ 3
2τ

γ‖h‖ ,
∣∣Eh̃∣∣ ≤ 16σ−1τγ‖h‖2 . (2.7)

N is analytic on the region determined by the given bounds on C and h. Furthermore, if
f is real-valued, then so is N (f).

A proof of this theorem will be given in Section 3. Notice that the zero-average part
h of f gets contracted by roughly a factor τγ relative to the constant part C, which is the
same factor that appears in Lemma 2.1. The restriction on the size of the domain of N ,
which is of the order of σ, comes from the solution of equation (2.4).
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The goal now is to compose RG transformations of this type, as long as the constant
part of f does not become too large. Given a sequence of matrices P0, P1, P2, . . . in SL(d,Z),
with P0 the identity, and a unit vector ω0 in Rd, we define

Tn = PnP
−1
n−1 , Sn = (T ∗n)−1 , λn = ‖Pnω0‖ , ωn = λ−1

n Pnω0 , (2.8)

for n = 1, 2, . . .. The following theorem will be proved in Section 4, using as input certain
estimates from [19].

Theorem 2.3. Given γ1 > γ0(β), there exist two sequences n 7→ σn and n 7→ τn of positive
real numbers less than one, both converging to zero, such that the following holds. If ω0 is
a unit vector in Rn satisfying the Diophantine condition (1.7), then there exists a sequence
n 7→ Pn of unimodular integer matrices, such that with Sn and λn as defined in (2.8),

2σn‖Sn‖ < τn , ‖Snξ‖ ≤
τn
2
‖ξ‖ , λ−1

n

n∏
j=1

(
4τγ1

j

)
· σ1 ≤ σn+1 , (2.9)

whenever ωn−1 · ξ = 0, for every positive integer n.

In order to simplify the discussion, the quantities described in this theorem are con-
sidered fixed from now on. We also assume that γ ≥ γ1 .

The n-th step RG transformation Nn and the composed RG transformation Ñn are
defined by the equation

Nn(f) = η−1
n (Tn)?(Uf)?f , Ñn = Nn ◦ Nn−1 ◦ . . . ◦ N1 , (2.10)

where ηn = λn/λn−1 for n ≥ 1, with λ0 = 1. To be more specific, we choose τ = τn and
ω = ωn−1 in the construction of the map Uf that enters the definition of N = Nn .

By Theorem 2.2, the transformation Nn is well defined on the open ball Bn ⊂ F of
radius 2−9σn , centered at the origin. Bn will be referred to as the domain of Nn . The
domain of Ñn is defined recursively as the set of all functions in the domain of Ñn−1 that
are mapped into Bn by Ñn−1. For such a function f , define f0 = f and

fn = Ñn(f0) , f̄n = Efn , hn = fn − f̄n . (2.11)

By Theorem 2.2 and Theorem 2.3, we have

‖hn‖ ≤ λ−1
n

n∏
j=1

(
2τγ

j

)
· ‖f0‖ ≤ 2−10σn+1 . (2.12)

This shows e.g. that for f ∈ F close to zero, the question of whether or not f is infinitely
renormalizable depends only on the size of the averages f̄n . Consider now a sequence ρ of
real numbers satisfying

0 < ρn ≤ 2−10σn+1 , n = 0, 1, 2, . . . . (2.13)
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Given an open set B(γ) ⊂ B1 containing zero, define B̃0 = B(γ) and

B̃n+1 =
{
f ∈ B̃n : ‖f̄n‖ < ρn

}
, n = 0, 1, 2, . . . . (2.14)

The bound (2.12) shows that B̃n+1 is contained in the domain of Ñn+1 .

Theorem 2.4. If γ > γ1 then there exists a sequence ρ satisfying (2.13), and a non-empty

open neighborhood B(γ) of the origin in F , such that Mγ =
⋂∞

n=0 B̃n is the graph of an
analytic function M : (I − E)B(γ) → EB(γ). Both M and its derivative vanish at the
origin.

A proof of this theorem is given in Section 5. The reducibility of functions f belonging
to M = Mγ will be proved in Section 6, by iterating the identity (2.6), and using that
fn → 0, in order to estimate the product of the matrices Ufn

.

3. Elimination of nonresonant modes
Here we solve equation (2.4) and prove Theorem 2.2. A unit vector ω ∈ Rd and a matrix
T in SL(d,Z) are assumed to be given. As mentioned in the last section, we also assume
that the cone K(τ/2) contains the orthogonal complement of ω, and that 2σ‖S‖ < τ .

Proposition 3.1. If ν belongs to I
−

then |ω · ν| > σ.

Proof. Given ν ∈ I−, consider its decomposition ν = ν‖ + ν⊥ into a vector ν‖ parallel to
ω and a vector ν⊥ perpendicular to ω. By using that ‖ν‖, ‖S‖, ‖ω‖ ≥ 1, we obtain

σ ≤ σ‖ν‖ < ‖S‖−1 τ

2
‖ν‖ ≤ ‖S‖−1

(
‖Sν‖ − ‖Sν⊥‖

)
≤ ‖S‖−1‖Sν‖‖ ≤ ‖ν‖‖ ≤ |ω · ν| ,

as claimed. QED

Given any n× n matrix C, define Ĉf = fC − Cf for every function f ∈ F .

Proposition 3.2. Assume that ‖C‖ ≤ σ/4. Then the linear operators Dω = ω · ∇ and

D = Dω + Ĉ commute with I−, have bounded inverses when restricted to I−F , and satisfy∥∥D−1
ω I

−∥∥ ≤ σ−1 ,
∥∥DωD−1I

−∥∥ ≤ 2 . (3.1)

Proof. Clearly, Dω, Ĉ, and I− commute with each other. The first inequality in (3.1)
follows immediately from Proposition 3.1. It implies ‖D−1

ω ĈI−‖ ≤ 2σ−1‖C‖ ≤ 1/2, and
the indicated bound on DωD−1I−= (I +D−1

ω Ĉ)−1I− is now obtained via Neumann series.
QED

In the rest of this paper, we will frequently use analyticity arguments. Thus, let us
recall at this point some relevant facts [21] about
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analytic maps. Let X and Y be Banach spaces over C, and let B ⊂ X be open. We say
that G : B → Y is analytic if it is Fréchet differentiable. Thus, sums, products, and com-
positions of analytic maps are analytic. Equivalently, G is analytic if it is locally bounded,
and if for all continuous linear maps f : C → X and h : Y → C, the function h ◦G ◦ f is
analytic. This shows e.g. that uniform limits of analytic functions are analytic. Assuming
that B is a ball of radius r and that F is bounded on B, a third equivalent condition is
that G has derivatives of all orders at the center of B, and that the corresponding Taylor
series has a radius of convergence at least r and agrees with G on B.

Another fact that we will use repeatedly is that F is a Banach algebra, i.e., we have
‖fg‖ ≤ ‖f‖‖g‖ for all f, g ∈ F .

In the remaining part of this section, f ∈ F is fixed but arbitrary, C = Ef , and
h = f − C. We seek a solution of equation (2.4) of the form U = exp(D−1u), with u a
function in I−F . In order to simplify notation, EF will be identified with GL(n,C). A
short computation shows that

I
−
U?f = u− ψ(u) , (3.2)

where
ψ(u) = −I

−[
(DωD−1u)E−1 + (DωE

+
2 )E−0 + E+

0 hE
−
0

+ CE−2 + (D−1u)CE−1 + E+
2 CE

−
0

] (3.3)

and

E±m =
∞∑

k=m

1
k!

(
±D−1u

)k
, m = 0, 1, . . . . (3.4)

Proposition 3.3. Assume that ‖C‖ < σ/6 and ‖h‖ < 2−9σ. Let r = 2−8σ, and denote

by Br the closed ball of radius r in I−F , centered at the origin. Then ψ has a unique fixed
point uf in Br , and

‖uf‖ ≤ 16
15‖h‖ . (3.5)

The map (C, h) 7→ uf is analytic on the domain defined by the given bounds on C and h.
If f is real-valued, then so is uf . Furthermore, if f belongs to A then Uf = exp(D−1uf)
belongs to G.

Proof. First, recall that ex ≤ (1− x)−1 whenever 0 ≤ x < 1. This fact will be used below
and in subsequent proofs.

A straightforward estimate, using Proposition 3.2 and the Banach algebra property
of F , shows that ψ is an analytic map from the space I−F to itself, satisfying the bound∥∥ψ(u)

∥∥ ≤ e4σ−1‖u‖(‖h‖+ 10σ−1‖u‖2
)
. (3.6)

Notice that ψ(0) = −I−h has norm ≤ r/2. Thus, if we prove that ‖Dψ(u)‖ ≤ 1/2 for
all u ∈ Br , then the existence and uniqueness of a fixed point uf ∈ Br follows from the
contraction mapping principle.
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Let u ∈ Br and g ∈ F be fixed but arbitrary, with ‖g‖ = 1. Define ϕ : C → F by the
equation ϕ(z) = ψ(u + zg). If |z| ≤ R = 2−6σ, then u + zg is bounded in norm by σ/48,
and by using (3.6), we find that

‖ϕ(z)‖ ≤ 12
11‖h‖+ 11σ−1‖u+ zg‖2 < R/2 . (3.7)

Thus, by Cauchy’s formula,

‖Dψ(u)g‖ = ‖ϕ′(0)‖ ≤ R−1 sup
|z|=R

‖ϕ(z)‖ < 1/2 . (3.8)

As mentioned above, this proves the existence and uniqueness of the fixed point uf in Br .
By equation (3.6), this fixed point satisfies

‖uf‖ ≤ 64
63

(
‖h‖+ 1

23‖uf‖
)
, (3.9)

which implies the bound (3.5).
The analyticity of the map (C, h) 7→ uf follows from the uniform convergence of

the series (3.4) and of the sequence ψn(0) → uf , together with the chain rule. If f is
real-valued, then the equation (3.3) shows that ψn(0), and thus uf as well, is real-valued.
Similarly, if f belongs to A then so does uf , implying that Uf ∈ G. QED

For reference later on, we note that Proposition 3.3 and Proposition 3.2 imply the
bound

‖Uf − I‖ ≤ exp
(
3σ−1‖(I− E)f‖

)
− 1 . (3.10)

Lemma 3.4. If f = C + h, with ‖C‖ ≤ σ/6 and ‖h‖ ≤ 2−9σ, then∥∥(Uf)?f − I
+
f
∥∥ ≤ 16σ−1‖h‖2 . (3.11)

Proof. An explicit computation shows that

(Uf)?f − I
+
f = I

+[
(DωD−1u)E−1 + (DωE

+
2 )E−0 + hE−1 + E+

1 hE
−
0

+ CE−2 + (D−1u)CE−1 + E+
2 CE

−
0

]
.

(3.12)

Using Proposition 3.2 and the Banach algebra property of F , we find that∥∥(Uf)?f − I
+
f
∥∥ ≤ e4σ−1‖uf‖

(
4σ−1‖uf‖‖h‖+ 10σ−1‖uf‖2

)
. (3.13)

The estimate (3.11) is now obtained by substituting the bound on ‖uf‖ from Proposi-
tion 3.3. QED

Proof of Theorem 2.2. Using the definition (2.5) of N , the function h̃ in equation (2.7)
is given by

h̃ = T?

[
I
+
h+ (Uf)?f − I

+
f
]
.
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The given bounds in (2.7) now follow from Lemma 3.4 and Lemma 2.1. In particular, we
have ∥∥h̃∥∥ ≤ τγ

(
‖h‖+ 16σ−1‖h‖2

)
≤ 33

32τ
γ‖h‖ , (3.14)

as claimed. The analyticity of N follows from the analyticity of the map f 7→ uf , the
uniform convergence of (3.4), and the chain rule. If f is real-valued, then so is uf by
Proposition 3.3, and thus N (f) is real-valued as well. QED

The following facts about torus-translations will be used later on. If f is a function
on Td and p a point on this torus, define (Rpf)(q) = f(q + p) for all q ∈ Td. These
translation operators Rp commute with the projections I± defined in (2.3). As a result,
they also commute with f 7→ Uf , as can be seen from our construction of this map. A
straightforward computation now shows that

N ◦Rp = RTp ◦ N , p ∈ Td . (3.15)

4. Choice of integer matrices
We give a brief description of the the multidimensional continued fractions expansion of
[19], which is based on the work of [24,25] on geodesic flows on homogeneous spaces. Then
we use the estimates from [19] on the resulting integer matrices Pn to prove Theorem 2.3.

Let F be a fundamental domain for the left action of Γ = SL(d,Z) on G = SL(d,R).
Consider the one-parameter subgroup of G, generated by the matrices

Et = diag
(
e−t, . . . , e−t, e(d−1)t

)
, t ∈ R , (4.1)

and the corresponding flow on the quotient space Γ\G, defined by ΓW 7→ ΓWEt. Given
a vector ω ∈ Rd of the form ω = (w, 1), define W ∈ G to be the matrix obtained from the
d×d identity matrix by replacing its last column vector by ω. Then, for every t ∈ R, there
exists a unique matrix P (t) ∈ Γ such that P (t)WEt belongs to F . To a given sequence
of “stopping times” tn ≥ 0 we can now associate a sequence of matrices Pn = P (tn). The
corresponding matrices Tn and Sn are defined as in (2.8).

Let θ = β/(d+ β).

Theorem 4.1. ([19]) There are constants c1, c2, c3 > 0, such that the following holds. If
ω = (w, 1) is any vector of length less than d, satisfying the Diophantine condition (1.7),
and if n 7→ tn is any sequence of stopping times, with t0 = 0 and δtn = tn− tn−1 > 0, then
the bounds

‖P−1
n ‖ ≤ c1 exp{(d− 1 + θ)tn},
‖Sn‖ ≤ c2 exp{(d− 1)(1− θ)δtn + d θ tn},
‖Snξ‖ ≤ c3 exp{−(1− θ)δtn + d θtn−1} ,

(4.2)

hold for all integers n > 0, and for all unit vectors ξ ∈ Rd that are perpendicular to Pn−1ω.

Remark. The condition ‖ω‖ < d was added in this theorem to have constants ck that do
not depend on the length of ω. For an arbitrary Diophantine ω ∈ Rd, it is always possible
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to permute basis vectors in Rd, and to rescale ω, in such a way that the last component is
equal to 1 and ‖ω‖ less than d.

Define now

σn = σ0e
−dδtn , τn = τ0 exp{−[(d− 1)θ + 1]δtn + dθtn} , (4.3)

with σ0 = τ0/(3c2) and τ0 = 2c3 . Then the first two inequalities in (2.9) are an immediate
consequence of the last two bounds in (4.2). In addition, we have

τ1τ2 · · · τn ≤ τn
0 exp{−(1− θ)tn + d θsn−1} , (4.4)

where sk = t1 + t2 + . . . tk . Define µ = (γ + 1)(1 − θ) − d. Consider the constants λn

defined in (2.8). By using the trivial estimate λ−1
n ≤ ‖P−1

n ‖, together with the first bound
in (4.2), we obtain

λ−1
n

n∏
k=1

(
4τγ

k

)
σ0σ

−1
n+1 ≤ c14nτγn

0 exp{−µtn + γd θsn−1 + d δtn+1} . (4.5)

This implies the third inequality in (2.9), provided that the sequence {tn} can be chosen
in such a way that the right hand side of (4.5) is less than 1. To this end, let

tn = c(1 + α)n , n = 1, 2, . . . ,

with c, α > 0 to be determined. By using that δtn+1 = αtn and sn−1 ≤ α−1tn , we find
that

λ−1
n

n∏
k=1

(
4τγ

k

)
σ0σ

−1
n+1 ≤ c14nτγn

0 exp{−εc(1 + α)n} , (4.6)

where ε = µ− γd θα−1 − dα . The goal is to choose α in such a way that ε > 0. Then by
taking c > 0 sufficiently large, the right hand side of (4.6) is less than one, for all positive
integers n, and the third bound in (2.9) follows. The condition ε > 0 is a quadratic
inequality for α, which is satisfied by α = µ/(2d), provided that µ2 > 4γθd2. An explicit
computation shows that µ2 is larger than 4γθd2, whenever

γ >
d

(1− θ)2
[
(1− θ + 2d θ) + 2

√
θ
√
d2 − (1− θ)(d2 − d+ 1− θ)

]
− 1 . (4.7)

The same condition also guarantees that µ, and thus α, is positive. Substituting θ =
β/(d+β) into the inequality (4.7), one gets the equivalent condition γ > γ0(β), with γ0(β)
as defined in equation (1.9). Finally, substituting the bound (4.7) on γ into the definition
of µ yields α = µ/(2d) > dθ/(1− θ), which shows that τn+1 = τ0 exp{[−(1− θ)α+ dθ]tn}
tends to zero as n → ∞. Taking c > 0 sufficiently large ensures that τn < 1 for all n.
The analogous property 1 > σn → 0 follows now from the first inequality in (2.9). This
completes the proof of Theorem 2.3.



Renormalization and Reducibility of Diophantine Skew Flows 13

5. The stable manifold
In this section, we define RG transformations for families of functions in A, parametrized
by A. These transformations Nn are then used to prove Theorem 2.4 and some other
estimates that are needed later on. Nn acts on a family F : A → A by composing it from
the left with Nn , and from the right with a reparametrization map on A that depends on
F . Recall that Nn is naturally defined on an open domain in F , but that its restriction
to A takes values in A. The situation is analogous for Nn , since, as will be clear from the
construction, the reparametrization map takes real values for real arguments, whenever F
is real. Thus, no generality is lost by assuming that G = GL(n,C). We will do this in the
remaining part of this paper, unless specified otherwise.

We start with a preliminary estimate on inverses of some simple maps. Denote by b
the open unit ball in A, centered at the origin. Consider the space U of analytic functions
U : b→ A, equipped with the sup-norm.

Proposition 5.1. Let 0 < λ < 1
3 , and let U ∈ U with ‖U‖ < 1

2 . Define Λ(A) = λA for
every A ∈ A. Then Λ−1 +U has a unique right inverse Λ +V on b, with V belonging to U
and satisfying ‖V ‖ ≤ λ‖U‖. The map U 7→ V is analytic on the domain in U defined by
the given condition on U .

Proof. If A is a matrix in A of norm less than 2/3, and C a matrix in A of norm one,
then from Cauchy’s formula, we obtain

‖DU(A)C‖ ≤ 3 sup
|z|=1/3

‖U(A+ zC)‖ ≤ 3‖U‖ < 3/2. (5.1)

Now consider the equation for V , which can be written as ψ(V ) = V , with ψ defined by
ψ(V ) = −λU ◦ (Λ + V ). Denote by B the closed ball of radius r = 1/3 in U , centered at
the origin. Then ψ is analytic on B, with derivative given by

Dψ(V )H = −λ
(
(DU) ◦ (Λ + V )

)
H . (5.2)

By equation (5.1), we see that ‖Dψ(V )‖ < 1/2, for all V ∈ B. Since ‖ψ(0)‖ ≤ r/2, the
map ψ is a contraction on B, and thus has a (unique) fixed point in B. This fixed point
V satisfies ‖V ‖ = ‖ψ(V )‖ ≤ λ‖U‖. The analyticity of U 7→ V follows form the uniform
convergence of ψn(0) → V for ‖U‖ < 1/2. QED

Next, let ρ0 = 2−11σ1 and

ρn = λ−1
n 4−nπγ1

n ρ0 , πn =
n∏

j=1

τj , n = 1, 2, . . . . (5.3)

For every integer n ≥ 0, define An to be the vector space A, equipped with the norm
‖s‖n = ρ−1

n ‖s‖. Denote by bn the open unit ball in An , centered at the origin. Define Bn

to be the space of analytic families F : bn → A, equipped with the norm

‖F‖n = sup
s∈bn

‖F (s)‖n . (5.4)
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The inclusion map from An into EA will be denoted by F 0. In other words, F 0(s) = s.
Notice that F 0 has norm one in Bn .

Let n ≥ 1. By Theorem 2.3, we have ρn−1 < 2−4n−6σn . Thus, if ‖F‖n−1 < 24n−3,
then F (s) belongs to the domain of Nn , for all s ∈ bn . We can associate to each such F
an analytic map

Yn,F = E(Nn ◦ F ) (5.5)

from bn−1 to An . Notice that, by Theorem 2.2, if F takes real values for real arguments,
then so does Yn,F . On the space of analytic maps bn−1 → A, we will use the topology of
uniform convergence (sup-norm).

Proposition 5.2. Assume that F ∈ Bn−1 satisfies ‖F −F 0‖n−1 < 1 and EF = F 0. Then
Yn,F : bn−1 → An has a unique right inverse Y −1

n,F : bn → bn−1 . Both Yn,F and its right
inverse depend analytically on F , on the domain defined by the given condition on F .
Furthermore,

‖Yn,F (s)− η−1
n s‖n ≤ 2−4nετγ−γ1

n ‖F − F 0‖n−1 , s ∈ bn−1 ,

‖DYn,F (s)− η−1I‖ ≤ 2−4n−6ετγ−γ1
n ‖F − F 0‖n−1 , s ∈ bn−1 ,

‖Y −1
n,F (s)− ηns‖n−1 ≤ 2−4n−1ετγ

n‖F − F 0‖n−1 , s ∈ bn .
(5.6)

Here, I denotes the inclusion map from An−1 into An , and ε = 24n+6σ−1
n ‖F − F 0‖ < 1.

Proof. By Theorem 2.2, the map Y = Yn,F satisfies the bound

‖ηnY (s)− s‖ = ‖ηnENn(F (s))− s‖ ≤ ‖EF (s)− s‖+ 16σ−1
n τγ

n‖(I− E)F (s)‖2

= 16σ−1
n τγ

n‖F (s)− s‖2 ≤ 2−4n−2ετγ
n‖F − F 0‖

= 2−4nετγ−γ1
n ηnρn‖F − F 0‖n−1 ,

(5.7)

with ε as defined above, for all s ∈ bn−1 . Dividing both sides by ηnρn yields the first
inequality in (5.6). The inequality ε < 1 follows from the fact that ‖F − F 0‖ ≤ ρn−1 <
2−4n−6σn .

Consider C ∈ A of norm one, and z ∈ C of absolute value ≤ 26. Given the allowed
size of ‖C‖ in Theorem 2.2, the bound (5.7) still holds if s is replaced by s+zC. Thus, the
second inequality in (5.6) is obtained from the first, using a Cauchy estimate with contour
|z| = 26.

In order to simplify notation, if λ is a scalar, then the map s 7→ λs will be denoted by λ
as well. Let now λ = ηnρn/ρn−1. Consider the space U introduced before Proposition 5.1.
Then U = ρ−1

n (Y −η−1
n )ρn−1 belongs to U . By using the first inequality in (5.6), we obtain

‖U(s)‖ ≤ ρ−1
n ‖(Y − η−1

n )(ρn−1s)‖ ≤ 2−4 , (5.8)

for all s ∈ A of norm less than 1. Notice also that λ = τγ1
n /4 ≤ 1/4. Thus, Proposition 5.1

guarantees the existence of a unique right inverse λ + V for λ−1 + U , with V belonging
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to U . This yields the right inverse Y −1 = ηn + ρn−1V ρ
−1
n for Y on bn . The bound on V

from Proposition 5.1, together with the first inequality in (5.6), implies that

‖Y −1(s)− ηns‖ = ρn−1‖V (ρ−1
n s)‖ ≤ 2ηnρn‖U‖ ≤ 2ηnρn‖Y − η−1

n ‖n

≤ 2−4n−1ετγ
nρn−1‖F − F 0‖n−1 ,

(5.9)

for all s ∈ bn . Dividing both sides by ρn−1 yields the third inequality in (5.6).
The analytic dependence on F , of the function Yn,F and its right inverse, follows from

Theorem 2.2, Proposition 5.1, and the chain rule. QED

This proposition allows us to define the n-th step RG transformation Nn and the
composed RG transformation Ñn for families by

Nn(F ) = Nn ◦ F ◦ Y −1
n,F , Ñn = Nn ◦Nn−1 ◦ . . . ◦N1 . (5.10)

Notice that ENn(F ) = F 0 . In particular, since Nn maps constant functions to constant
functions, F 0 is a fixed point for Nn . The domain of Nn is the set of all F ∈ Bn−1

satisfying ‖F − F 0‖n−1 < 1 and EF = F 0. Clearly, Nn is analytic on this domain.
In what follows, we assume that γ ≥ γ2 > γ1 . Let K ≤ 1 be a fixed positive real

number satisfying
8nπγ2−γ1

n K ≤ 1/16 , (5.11)

for all integers n ≥ 0. Such a number K exists by Theorem 2.3.

Lemma 5.3. If F0 ∈ B0 satisfies ‖F0 − F 0‖0 < K and EF0 = F 0, then Ñn(F0) is well
defined for all n ≥ 1, and satisfies∥∥Ñn(F0)− F 0

∥∥
n
≤ 8nπγ−γ1

n ‖F0 − F 0‖0 . (5.12)

Proof. Let m ≥ 1, and let F be an arbitrary family in the domain of Nm . Fix s ∈ bm ,
and define s′ = Y −1

m,F (s). By Theorem 2.2 and Proposition 5.2, we have

ρ−1
m ‖Nm(F )(s)− F 0(s)‖ = ρ−1

m ‖(I− E)Nm(F (s′))‖ ≤ 2τγ
mη

−1
m ρ−1

m ‖(I− E)F (s′)‖
= 8τγ−γ1

m ρ−1
m−1‖F (s′)− F 0(s′)‖ .

(5.13)

Consider now F0 in the domain of N1 , and assume that the claim of Lemma 5.3 holds for
all n < m. By setting F = Ñm−1(F0) in inequality (5.13), we obtain∥∥Ñm(F0)− F 0

∥∥
m
≤ 8τγ−γ1

m

∥∥Ñm−1(F0)− F 0
∥∥

m−1
≤ 8mπγ−γ1

m ‖F − F 0‖0 . (5.14)

This proves (5.12) for n = m. Under the given assumptions on F0 , the right hand side of
this inequality is less than 1, which shows that Ñm(F0) belongs to the domain of Nm+1 .
QED

In what follows, the set of families satisfying the assumptions of Lemma 5.3 will be
referred to as the “domain of Ñ ”. If F0 is any family in this domain, define

Fn = Ñn(F0) , Yn = Yn,Fn−1 , Zm,n = Y −1
m+1 ◦ . . . ◦ Y

−1
n−1 ◦ Y −1

n , (5.15)
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for all integers 0 ≤ m < n.

Proposition 5.4. Suppose that F belongs to the domain of Ñ. Then there exists a unique
sequence m 7→ zm ∈ bm satisfying

zm−1 = Y −1
m (zm) , m = 1, 2, . . . , (5.16)

and this sequence is given by the limits zm = limn→∞ Zm,n(0). The maps F 7→ zm are

analytic on the domain of Ñ. Furthermore, if F takes real values for real arguments, then
zm is real.

Proof. Let F0 = F . We start by establishing a contraction property for Y −1
n . Let s ∈ bn .

By using Proposition 5.2, and the fact that ‖ηns‖n−1 = 1
4τ

γ1
n ‖s‖n , we obtain

‖Y −1
n (s)‖n−1 ≤ ‖ηns‖n−1 + ‖Y −1

n (s)− ηns‖n−1 ≤ 9/32 . (5.17)

Thus, Y −1
n maps bn into bn−1/3. Furthermore, by Cauchy’s formula, the derivative of Y −1

n

on the closure of bn/3 is bounded in norm (as an operator from An to An−1) by 1/2.
Consider now an arbitrary sequence n 7→ sn ∈ bn , with the property that sn belongs

to the closure of bn/3 for n ≥ 1. Notice that if a sequence n 7→ zn ∈ bn satisfies (5.16), then
it automatically has this property. Define sm,n = Zm,n(sn) for all integers 0 ≤ m < n.
By the contraction property of the maps Y −1

i , we have ‖sm,k − sm,n‖n < 2m−n whenever
1 ≤ m < n < k. This shows that n 7→ sm,n converges as n→∞, and that the limit ŝm is
independent of the sequence {sn}. In particular, we see that ŝm = zm by choosing sn = 0
for all n. The identities (5.16) are obtained by choosing sn = zn for all n.

By Proposition 5.2, the maps F 7→ sm,n = Zm,n(0) are analytic on the domain of
Ñ. The analyticity of F 7→ zm now follows from the uniform convergence of sm,n → zm .
If Fn−1 is real (takes real values for real arguments) for some n > 0, then so is Yn , as
mentioned earlier, and thus also Y −1

n and Fn . By induction, we see that all matrices sm,n

are real whenever F is, and the same holds for the limits zm . QED

Denote by B′(γ) the ball in (I − E)Aγ of radius Kρ0 , centered at the origin. Define
B(γ) = b0 ⊕ B′(γ), that is, f ∈ Aγ belongs to B(γ) if and only if f̄ ∈ b0 and h = f − f̄
belongs to B′(γ).

Consider now the set Mγ defined in Theorem 2.4, with B(γ) as described above.

Corollary 5.5. Let F be a family in the domain of Ñ, and let s ∈ b0. Then F (s) belongs
to Mγ if and only if s = z0(F ).

Proof. Consider first f = F (z0). Set fn = Fn(zn) for each n > 0. By the definition of Nn ,
and by Proposition 5.4, we have fn = Nn(fn−1) for n = 1, 2, . . ., and f̄n = EFn(zn) = zn

belongs to bn . This shows that f ∈Mγ .
Consider now a fixed s = s0 in b0 , and assume that f0 = F (s0) belongs Mγ . Then we

can define fn = Ñn(f) for all n > 0, and sn = f̄n belongs to bn . Set F0 = F . Proceeding
by induction, let n > 0, and assume fn−1 = Fn−1(sn−1). Since sn = Yn(sn−1), and since
Yn has a unique right inverse on bn by Proposition 5.2, we have sn−1 = Y −1

n (sn). As a
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result, fn = Fn(sn). This shows that sn = Yn(sn−1) holds for all n > 0, and thus sn = zn

by Proposition 5.4. QED

Proof of Theorem 2.4. To a function h ∈ B′(γ) we associate the family F : s 7→ s+ h.
This family belongs to the domain of Ñ. Now define M(h) = z0(F ). By Corollary 5.5,
h+ s = F (s) belongs to Mγ if and only if s = M(h). This shows that Mγ is the graph of
M over B′(γ).

The analyticity of M follows from the analyticity of z0 . Furthermore, we have M(0) =
z0(F 0) = 0. The identity DM(0) = 0 follows from the fact that, by Proposition 5.2, the
derivative of F 7→ Y −1

n,F vanishes at F 0, for each n ≥ 0. QED

The following estimate will be used in the next section. Denote by In,m the inclusion
map from Am into An .

Proposition 5.6. Let F be in the domain of Ñ. Then the map Z ′n = Yn ◦ · · · ◦Y1 satisfies

‖DZ ′n(s)− λ−1
n In,0‖ ≤ 2−10‖λ−1

n In,0‖ , (5.18)

for all s in the image of bn−1 under Z0,n−1 .

Proof. Define sk−1 = Y −1
k (sk) for k = n − 1, . . . 2, 1, starting with a fixed but arbitrary

sn−1 ∈ bn−1 . By using Proposition 5.2, and the fact that the inclusion map from Ak−1

into Ak has norm ρk−1/ρk = 4ηkτ
−γ1
k , we obtain

‖DYk(sk−1)‖ ≤
(
1 + 2−4k−8ck

)
‖η−1

k Ik,k−1‖ , (5.19)

with ck = τγ
k ‖Fk−1−F 0‖k−1 < 1. Taking products, the norm of DZ ′k(s0) can be bounded

by twice the norm of λ−1
k Ik,0 . Thus,

‖DZ ′n(s0)− λ−1
n In,0‖ = ‖DYn(sn−1) · · ·DY2(s1)DY1(s0)− λ−1

n In,0‖

≤
n∑

k=1

∥∥η−1
n · · · η−1

k+1In,k

[
DYk(sk−1)− η−1

k Ik,k−1

]
DZ ′k−1(s0)

∥∥
≤

n∑
k=1

2−4k−7ck · ‖λ−1
n In,0‖ ,

and the inequality (5.18) follows. QED
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6. Reducibility
The main goal in this section is to prove Theorem 1.1.

Consider first the flow ΦX for a general vector field X = (ω, f .) The identity

Φt
X(q) = I +

∫ t

0

f(q + sω)Φs
X(q) ds . (6.1)

can be used to construct and estimate ΦX . By applying first the contraction mapping
principle, and then the cocycle identity for ΦX to improve the result, we obtain∥∥Φt

X − I
∥∥

γ
≤ e‖tf‖γ − 1 . (6.2)

This bound holds for any γ ≥ 0, provided that f ∈ Aγ .
Consider now f0 ∈ Mγ and the corresponding renormalized functions fn = Ñn(f0).

In order to simplify notation, the transformation Ufn and the flow Φ(ωn,fn) will be denoted
by Un and Φn , respectively.

Lemma 6.1. Let f0 ∈Mγ . For each n ≥ 0 there exists Vn ∈ G0 such that

Φt
n(q) = Vn(q + tωn)−1Vn(q) , t ∈ R . (6.3)

These function Vn satisfy the relations Vn+1 = (Vn ◦ Tn+1)Un and the bounds

‖Vn − I‖0 ≤ 24−nπγ−γ1
n σ−1

1 ‖f0‖γ . (6.4)

Furthermore, the maps f0 7→ Vn are analytic.

Proof. By equation (2.6), we have

Φt
n(q) = Vm,n(q + tωn)−1Φηm...ηn+1t

m (Tm . . . Tn+1q)Vm,n(q) , (6.5)

for m > n ≥ 0, where

Vm,n(q) = Um−1(Tm−1 · · ·Tn+1q) · · ·Un+1(Tn+1q)Un(q) . (6.6)

For convenience later on, we also define Vn,n = I. Using the notation of Section 5, we have
fn ∈ 2bn and thus

‖ηm · · · ηn+1tfn‖γ ≤ 2λ−1
n λmρm|t| ≤ 2 · 4−mλ−1

n ρ0|t| . (6.7)

If m is sufficiently large, then (6.2) leads to the bound∥∥Φηm...ηn+1t
m − I

∥∥
0
≤ 41−mλ−1

n ρ0|t| . (6.8)

Thus, Φηm...ηn+1t
m converges in G0 to the identity, as m → ∞, uniformly in t on compact

subsets of R.
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Consider now the factors Uj in the product (6.6). By Theorem 2.2 and Theorem 2.3,

σ−1
n+1‖hn‖γ ≤ 2−n−9πγ−γ1

n ε , ε = 29σ−1
1 ‖f0‖γ < 1 . (6.9)

Combining this with the estimate (3.10), we obtain

‖Un − I‖γ ≤ 2−n−7πγ−γ1
n ε , ‖Un‖γ ≤ e2

−n−7ε . (6.10)

Notice that ‖U ◦ T‖0 = ‖U‖0 ≤ ‖U‖γ for any matrix T in SL(d,Z), and any U in Fγ with
γ ≥ 0. Thus, the bounds (6.10) can be used to estimate the product (6.6) in G0 . We have

‖Vm,n‖0 ≤
m−1∏
j=n

‖Uj‖γ ≤ e2
−n−6ε , (6.11)

and as a result,

‖Vk,n − Vm,n‖0 ≤
k−1∑
j=m

∥∥(Uj − I)Vj,n

∥∥
γ
≤ 2−m−5πγ−γ1

n ε , (6.12)

for k > m ≥ n ≥ 0. This shows that the limits Vn = limm→∞ Vm,n exist in G0 , and
that they have the properties described in Lemma 6.1. The analyticity of f0 7→ Vn follows
from the uniform convergence of Vm,n → Vn , combined with the fact that the map M
defining the manifold Mγ , the RG transformations Nn , and the map f 7→ Uf described
in Proposition 3.3, are all analytic. QED

Proposition 6.2. The manifold Mγ is invariant under the torus-translations Rp , and the
map f0 7→ V0 defined by Lemma 6.1 commutes with these translations.

Proof. First, we note that the translations Rp are isometries on F and commute with E.
This shows in particular that B(γ) is invariant under Rp .

The identity (3.15) shows that Rpf0 belongs to the domain of Ñn whenever f0 does,
and that Ñn(f0) and Ñn(Rpf0) have the same torus-average. From the definition (2.14)
of the sets B̃n whose intersection is Mγ , it is now clear that Mγ is invariant under
torus-translations.

The fact that f0 7→ V0 commutes with Rp follows from an explicit computation, using
the identities (3.15) and (6.6). QED

Lemma 6.3. Let γ ≥ γ2 > γ1 and ε = γ− γ2 . If f0 ∈Mγ then the function V0 described
in Lemma 6.1 belongs to Gε and has a directional derivative Dω0V0 in Fε . As elements of
Fε , both V0 and Dω0V0 depend analytically on f0 . Furthermore, if f0 is the restriction to
Td of an analytic function, then so is V0 .

Proof. In order to avoid possible ambiguities, assume first that γ = γ2 . Denote by H and
H the maps that associate to each f ∈ B′(γ2) via f0 = f+M(f) the corresponding function
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V0 and the value V0(0), respectively. Proposition 6.2 implies that RpV0 = H(Rpf), and
thus

V0(p) = H(Rpf) , p ∈ Td . (6.13)

By Lemma 6.1 the function H is bounded and analytic on B′(γ2). Consider its Taylor
series at zero,

H(f) =
∞∑

n=0

Hn(f, . . . , f) , (6.14)

where Hn = DnH(0)/n! . Let r be a fixed but arbitrary positive real number less than
Kρ0 . Then the series (6.14) converges absolutely in the ball ‖f‖γ2 ≤ r, and the derivatives
of H satisfy a bound ‖Hn‖ ≤ cr−n as n-linear functionals on An

γ2
.

Next, we allow γ ≥ γ2 but keep H as a function on B′(γ2). Concerning the condition
f0 ∈Mγ in Lemma 6.3, we note that Mγ = Mγ2 ∩B(γ), which follows from the definition
(2.14) of the sets B̃n , and from the fact that B(γ) is a subset of B(γ2).

Assume now that f belongs to B′(γ) and satisfies ‖f‖γ < r. If we use the expansion

Rpf =
∑
ν∈Zd

FνEν(p) , Fν(q) = fνEν(q) , Eν(q) = eiν·q , (6.15)

where fν are the Fourier coefficients of f , then V0 can be represented as follows:

V0(p) =
∞∑

n=0

∑
ν1,...,νn∈Zd

Hn(Fν1 , . . . , Fνn)Eν1(p) · · ·Eνn(p) . (6.16)

By using the bound

∣∣Hn(Fν1 , . . . , Fνn
)
∣∣ ≤ cr−n

n∏
j=1

‖Fνj
‖γ2 = cr−n

n∏
j=1

‖fνj
‖‖Eνj

‖γ2 , (6.17)

and the fact that ‖Eν‖γ2‖Eν‖ε = ‖Eν‖γ , we obtain

‖V0‖ε ≤
∞∑

n=0

∑
ν1,...,νn∈Zd

cr−n
n∏

j=1

‖fνj‖‖Eνj‖γ

= c
∞∑

n=0

(
r−1

∑
ν∈Zd

‖fν‖‖Eν‖γ

)n

=
c

1− r−1‖f‖γ
.

(6.18)

This shows that V0 ∈ Gε , as claimed. From the identities (6.1) and (6.3), we see that
Dω0V0 belongs to Fε . The analytic dependence of V0 (and thus Dω0V0) on f follows from
the uniform convergence (6.18) of the Taylor expansion for f 7→ V0 on any ball ‖f‖γ ≤ r′

with r′ < r < Kρ0 . Finally, if f is the restriction to Td of an analytic function, then due
to the exponential decay of the Fourier coefficients fν , we have

r−1
∑
ν∈Zd

‖fν‖‖Eν‖γ2e
δ‖ν‖ < 1 , (6.19)
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for δ > 0 sufficiently small. By using this bound to estimate the sum (6.16), one finds
that the sum is absolutely convergent in the region |Im(pj)| < δ/2. Thus, V0 extends
analytically to this region. QED

The following lemma concerns the situation described in the introduction, where f =
f0 is of the form (1.10). These functions f define a closed linear subspace A1

γ of Aγ , which
can also be characterized by the identity

f(q + (0, r)) = e−r·Jf(q)er·J , q ∈ Td , r ∈ R` . (6.20)

Lemma 6.4. Let γ ≥ γ2 + 1 with γ2 > γ1 , and assume that f0 belongs to Mγ ∩A1
γ . Set

f = f0 and V = V0 . If g = Θ?f , then the flow for Y = (w, g .) is given by equation (1.12),
for some C ∈ A. The corresponding map f0 7→ C is analytic.

Proof. The first equality in (1.12) follows from Lemma 6.1 and the definition (1.11). Define

φt(x) = V (x+ tw)Φt
Y (x)V (x)−1 , (6.21)

for t ∈ R and x ∈ Tm. Notice that φ is the flow for a skew system Z = (w, h .) on Tm×G,
and since V ∈ G1 by Lemma 6.3, the function h belongs to A0 .

From the first equality in (1.12), we have

φt(x) = V (x+ tw)etAV (x+ tω)−1 . (6.22)

Consider now an arbitrary sequence {tj} such that tjκ → 0 on the torus T`, as j → ∞.
Then exp(tjκ · J) → I. Furthermore, dist(tjω, tjw) → 0 on the torus Td, and since V is of
class C1, we have φt+tj (x) → φt(x) uniformly in x, if t = 0. By the cocycle identity for
the flow φ, the same holds for any t ∈ R, and the convergence is uniform in t. This implies
(see e.g. [22]) that the function t 7→ φt(x) is periodic or quasiperiodic, with frequencies in
K = {κ1, . . . , κ`}. As a result,

h(x+ tw) = φ̇t(x)φt(x)−1 (6.23)

is also periodic or quasiperiodic in t, with frequencies in K. But the frequency module
of t 7→ h(x + tw) is clearly a subset of W = {w1, . . . , wm}, and since W ∩K is empty, h
has to be constant. Setting C = h, we obtain φt(x) = etC , and the identity (1.12) now
follows from (6.21). A computation of h(x) from the equations (6.23) and (6.22) yields
C = V AV −1 − (DκV )V −1, evaluated at x. This identity (between matrices, if x is fixed),
together with Lemma 6.3, shows that C depends analytically on f . QED

In order to complete the proof of Theorem 1.1, consider now the case where G is
a proper Lie subgroup of GL(n,C). By Proposition 3.3, the restrictions to A of the
transformations Nn take again values in A, and so the transformations Nn preserves the
subspace of families taking values in A. Thus, the map M described in Theorem 2.4 takes
values in A when restricted to A, as claimed in Theorem 1.1. Similarly, the fact that
Uf ∈ G whenever f = f0 ∈ A implies that the matrices (6.6) belong to G, and so the same
is true for the limit V = V0(q). The same arguments apply to the case where G is a Lie
subgroup of GL(n,R), if we use that by Proposition 5.4, the parameter values z0 defining
the map M are all real in this case. The remaining claims of Theorem 1.1 now follow from
Theorem 2.4, Lemma 6.1, and Lemma 6.3.
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7. The special case G=SL(2,R)
In this section, G is the group of unimodular 2 × 2 matrices over R, and A is the corre-
sponding Lie algebra of real traceless 2×2 matrices. As explained in the introduction, our
approach to skew flows with nonzero fibered rotation number is to convert them to skew
flows with zero (or near-zero) rotation number, which involves increasing the dimension of
the torus. As far as renormalization is concerned, the main difficulty with this approach is
that the space A1 of functions f of the form (1.10) is not invariant under renormalization.
Superficially, the fact that the torus-average of f ∈ A1 is necessarily a constant multiple
of J may seem to explain the statement about one-parameter families in Theorem 1.2.
However, this property is neither invariant under renormalization, nor does is guarantee
that the flow for X = (ω, f .) remains bounded. Below we will introduce an alternative
property, that is more closely linked to hyperbolicity, and invariant.

First, we give a simple sufficient condition for a skew system to have nonzero fibered
rotation number.

Proposition 7.1. If det(f(q)) > 0 for all q ∈ Td, then %(X) 6= 0.

Proof. If we set τ(t) = tr(Jf(q)) and δ(t) = det(f(q)), with q = q0 + tω, then an explicit
calculation shows that (1.14) can be written as

2α̇ = −τ + ρ sin(2α+ β) , ρ =
√
τ2 − 4δ , (7.1)

for some angle β depending on f(q) and on u0 . Notice that τ2 ≥ 4δ, since f(q) is traceless.
Thus, if f(q) is always elliptic (δ > 0), then α̇ is bounded away from zero and the rotation
number cannot vanish. QED

One of our goals is to show that a vector field X = (ω, f .) with f ∈ A1 close to
zero cannot generate a hyperbolic flow, by excluding the possibility that the renormalized
functions fn have the following property.

Definition 7.2. Let S1 be the set of unit vectors in R2. We say that a vector field
X = (ω, f .) has the expanding cone property if for every q ∈ Td, there exists an open
cone C(q) in R2 not intersecting its negative, with vertex at zero, and a unit vector u(q)
in this cone, such that the following holds. The map q 7→ S1 ∩C(q) defines two continuous
functions from Td to S1. The function q 7→ u(q) is continuous as well, and homotopic to a
constant. Furthermore, for every q ∈ Td, the cone Φt

X(q)C(q) is contained in C(q + tω) for
all t > 0, and the length of Φt

X(q)u(q) tends to infinity as t→∞.

We note that the expanding cone property is invariant under coordinate changes of the
form (2.1) or (1.5), with V continuous and homotopic to the identity. A simple condition
that implies this property is given in the following proposition.

Proposition 7.3. Assume that f : Td → A is continuous and of the form f = C+h, with
C ∈ A symmetric and ‖h(q)‖ < ‖C‖/4 for all q ∈ Td. Then X = (ω, f .) has the expanding
cone property.

Proof. Our assumptions imply that the eigenvalues of C are ±‖C‖. Let u0 be a unit
eigenvector of C for the eigenvalue ‖C‖, and define C0 to be the set of all nonzero vectors
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in R2 whose angle with u0 is less than π/4. Consider first the case f ≡ C. Then for every
nonzero v on the boundary of C0 , the vector fv points to the interior of the cone C0 . Thus,
the solutions of equation (1.13), with initial condition v0 in C0 , remains in C0 for all times
t > 0. A straightforward computation shows that under the given assumptions of h, the
same remains true for f = C + h. Thus, X has the expanding cone property, with the
family of cones being q 7→ C0 , and with u(q) = u0 for all q. Notice that no condition on ω
is needed. QED

Lemma 7.4. If f belongs toA1 thenX = (ω, f .) cannot have the expanding cone property.

Proof. Consider first an arbitrary f ∈ A such that X = (ω, f .) has the expanding cone
property. Let q ∈ Td be fixed. Using the notation of Definition 7.2, denote by A(q) the set
of all nonzero v0 ∈ R2 such that v(t) = Φt

X(q)v0 belongs to C(q + tw) for some (and thus
each sufficiently large) positive t. This set is clearly open. Notice that if v0 is any nonzero
vector in R2, with the property that v(t) = Φt

X(q)v0 tends to infinity as t → ∞, then v0
belongs to either A(q) or −A(q). This follows from the fact that Φt

X(q) is area-preserving
(so the angle between v(t) and Φt

X(q)u(q) has to approach zero), and that the opening
angles of our cones are bounded away from zero. Thus, given that the two disjoint open
sets ±A(q) cannot cover all of R2 \ {0}, it is not possible that |v(t)| → ∞ as t → ∞, for
every nonzero v0 ∈ R2.

Assume now for contradiction that f belongs to A1. Define zr(x) = erJu(q), with
u as described in Definition 7.2. Then Φt

Y (x)zr(x) = e(r+tκ)JΦt
X(q)u(q) tends to infinity

as t → ∞. But as r increases from 0 to 2π, the vectors zr(x) cover all of S1, since u is
homotopic to a constant function. This implies that Φt

Y (x)v0 tends to infinity (in length)
for each nonzero v0 ∈ R2, which was shown above to be impossible. QED

Now we are ready to renormalize. Denote by J the one-dimensional subspace of A,
consisting of real multiples of the matrix J .

Lemma 7.5. Let h ∈ A1 ∩B′(γ), and define F (s) = h+ s for s ∈ b0 . Then the (unique)
value s = z0(F ) where the family F intersects Mγ belongs to J, and it is the unique matrix
in b0 ∩ J for which F (s) has a zero fibered rotation number.

Proof. Recall that z0 = z0(F ) is real, by Proposition 5.4. Assume for contradiction that
z0 does not belong to J. Then for sufficiently large m, the sets Z0,m(bm/3) have an empty
intersection with J. Denote by n the smallest value of m for which this intersection is
empty, and define Jk = Z0,n−1(bn−1/k) ∩ J.

Let r = ‖η−1
n In,n−1‖. The bound (5.19) shows that the image under Yn of 1

3bn−1 is
contained in r

2bn , and that the image of bn−1 contains 2r
3 bn . The first property implies

that Z ′n(J3) intersects r
2bn at some point s outside 1

3bn. Now consider the connected
component of Z ′n(J1) containing s. By Proposition 5.6, this curve is sufficiently “parallel”
to J in order to intersect the subspace tr(J∗s) = 0 at some point sn = Z ′n(s0) that lies
inside 2r

3 bn , but outside 1
4bn. The matrix sn is symmetric with norm ≥ ρn/4, and by

Lemma 5.3, we have ‖Fn(sn) − sn‖ < ρn/16. Thus, by Proposition 7.3, the vector field
for Fn(sn) has the expanding cone property. Given that this property is invariant under
coordinate changes of the form (2.1) or (1.5), with V continuous and homotopic to the
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identity, F (s0) has the same property. But since s0 ∈ J, the function F (s0) belongs to A1,
and we get a contradiction with Lemma 7.4. This shows that z0 belongs to J.

Lemma 6.1 shows that %(F (z0)) = 0. Consider now s0 ∈ b0 ∩ J different from z0 .
Then there exists n > 0 such that s0 lies in Z0,m(bm) for all m < n, but not in Z0,n(bn),
so the norm of sn = Z ′n(s0) is at least ρn . On the other hand, zn = Z ′n(z0) has norm
less than ρn/3, as was shown in the proof of Proposition 5.4. Thus, ‖sn − zn‖ > 2‖zn‖.
Denote by B and C the symmetric and antisymmetric parts of sn − zn , respectively. By
Proposition 5.6, we have ‖C‖ > 10‖B‖. In addition, ‖Fn(sn)−sn‖ < ρn/16 by Lemma 5.3.
As a result, ‖C‖ > ‖Fn(sn) − C‖, which by Proposition 7.1 implies that Fn(sn) cannot
have a vanishing fibered rotation number. Thus, we cannot have %(F (s0)) = 0, since this
property is preserved under renormalization. QED

Proof of Theorem 1.2. We can follow the sketch given after the statement of this
theorem. A straightforward computation shows that ‖L‖ and ‖L−1‖ can be bounded by
2‖κ−1A‖1/2 Thus, the indicated map g 7→ f = (Θ?)−1(cL−1gL), with c = ‖ω‖−1, admits
the bound

‖f‖ ≤ 22γ4c · 4‖κ−1A‖‖g −A‖ ≤ 22γ16a‖g −A‖ . (7.2)

This shows that the image B0 under f 7→ g, of the domain B = B(γ) for which Theorem 1.1
holds, contains a ball of radius R = Kr0/(22γ16a), centered at the constant function A.
The remaining claims of Theorem 1.2 are now an immediate consequence of Theorem 1.1,
Lemma 7.5, and Lemma 6.4. QED

References

[1] E.I. Dinaburg, Ja. G. Sinai, The one-dimensional Schrödinger equation with quasiperiodic
potential, Funkcional. Anal. i Priložen. 9, 8–21 (1975).
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