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Abstract. In this paper we give a new proof of the local analytic linearisation of
flows on T2 with a Brjuno rotation number, using renormalization techniques.

1. Introduction

We define a renormalization scheme for analytic vector fields on the torus T2 =
R2/Z2. The vector fields are required to generate flows of Poincaré type, i.e. there
is a classification by a unique asymptotic slope α (winding ratio) of their lifts to the
universal cover. This winding ratio α is invariant under coordinate transformations of
the torus, up to the action of GL(2,Z), and the renormalization acts on it as the Gauss
map. So, all vector fields with α 6= 0 are renormalisable, and those with α ∈ R−Q are
infinitely renormalisable.

The renormalization of flows methodology has been used in several contexts such as
Hamiltonian systems e.g. [9, 16, 4, 3, 10, 11, 6, 13, 12], and toroidal flows [14, 15].
In all these works the frequency vectors of the quasiperiodic motions considered are
Diophantine, and in some cases subsets of these of constant, Koch and golden types.
The present approach includes an improved version of the renormalization operators in
[14, 15], done to extend the result in [15] to Brjuno winding ratios. This can then be
applied to other quasi-periodic problems such as the ones mentioned above, extending
them to Brjuno frequency vectors in the lower dimensional case.

The problem we consider in this paper is the analytic “rectification” of the flow
generated by a close to constant vector field. That is to find an analytic conjugacy
between a given flow and a linear one with the same winding ratio. This is equivalent
to the conjugacy to pure rotation problem in the context of circle diffeomorphisms,
for which the rotation number takes the role of the winding ratio. (The two systems
are related by considering the return map to a transversal of the flow.) Yoccoz [17]
found that the set of Brjuno numbers is exactly the set of frequencies for which one can
guarantee such linearisation in the local analytic case. Even if this was done for the
Siegel problem on linearisation of holomorphic maps in the neighbourhood of a fixed
point, the same holds in the circle map ([5]) and Poincaré flow contexts. In this paper
we recover the sufficient part of Yoccoz’s result corresponding to [1, 2].

We say that two flows φt and ψt on T2 are Cr-conjugate (or orbit equivalent) if there is
a Cr-diffeomorphism h of T2 taking orbits of φt onto those of ψt, preserving orientation.
Notice that we allow a time change τ giving more satisfying conjugacy classes. This is
the same to say that two vector fields X, Y on T2 are conjugate if ( d

dt
τ) X ◦ h = DhY .

Theorem 1.1. Take the flow generated by a real-analytic vector field v on T2 sufficiently
close to the constant vector field ω ∈ R2 and with the same winding ratio α. Then it is
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analytically conjugate to the linear flow φt : x 7→ x + tω on T2, t ≥ 0, if α is a Brjuno
number. Moreover, the conjugacy depends analytically on v.

We show the above theorem by relating it to the fact that the orbit under renormal-
ization of a constant vector field with Brjuno winding ratio attracts all the nearby orbits
in the same homotopy class. Recall that Brjuno numbers include all Diophantines and
some Liouville, and is a full Lebesgue measure set. Finally, we remark that the conver-
gence of the renormalization does not require the use of its derivatives as in [9, 14, 15].
Thus, it should be useful to the study of Cr vector fields for which the renormalization
is not C1.

In section 2 we review the basic properties of the continued fraction expansion of
irrational numbers. We construct the renormalization scheme and proof its convergence
in section 3. The construction of the conjugacy is done in section 4. Finally, in the
appendix A we present a proof of Theorem 3.4 on the elimination of non-resonant modes,
using a homotopy method.

2. Continued fractions

2.1. Gauss map. Consider an irrational number 0 < α = α0 < 1 written in its contin-
ued fractions expansion:

α = [a1, a2, . . . ] =
1

a1 +
1

a2 + . . .

, (2.1)

an ∈ N. Its iterates under the Gauss map are αn = {α−1
n−1} = [an+1, . . . ], n ∈ N, that is

αn =
1

an+1 + αn+1

. (2.2)

Let βn =
∏n

i=0 αi, n ∈ N ∪ {0}. It is a well-known fact (cf. [7]) that

βn ≤ γn, γ = (
√

5− 1)/2. (2.3)

Consider the transfer matrices in GL(2,Z):

T (n) =

[−an 1
1 0

]
. (2.4)

In addition, define P (0) = I and

P (n) = T (n) . . . T (1) =

[
pn−1 pn

qn−1 qn

]−1

, n ∈ N. (2.5)

This gives the rational approximants pn/qn = [a1, . . . , an] ∈ Q with

1

2qn+1

≤ βn ≤ 1

qn+1

, (2.6)

with a similar relation for pn.
Finally, define the sequences of vectors in R2:

ω(n) = α−1
n−1T

(n)ω(n−1) = (αn, 1)

Ω(n) = −α−1
n−1

>T (n)−1
Ω(n−1) = (1,−αn).

(2.7)
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2.2. Brjuno condition. An irrational number α is a Brjuno number if

∑
n≥1

log(qn+1)

qn

< +∞. (2.8)

The set of all Brjuno numbers is denoted by BC.

2.3. Hyperbolicity of the transfer matrices. As we shall see, a crucial step in our
renormalization scheme is to eliminate all far from resonance modes in the Fourier series,
i.e., all terms labeled by integer vectors outside the cone

I+
n = {k ∈ Z2 : |k · ω(n)| ≤ σn‖k‖} (2.9)

for a given σn > 0, n ∈ N∪{0}. We use the norm in R2 given by ‖(x1, x2)‖ = |x1|+ |x2|
and the matrix norm ‖A‖ = maxj

∑
i |Ai,j| for a square matrix A = [Ai,j].

Lemma 2.1. For all k ∈ I+
n−1 and n ∈ N, we have

‖ >T (n)−1
k‖ ≤ An−1‖k‖, (2.10)

where

An−1 = σn−1‖T (n)−1‖+ αn−1
‖Ω(n)‖
‖Ω(n−1)‖ . (2.11)

Proof. We write k = k1 + k2, where

k1 =
k · ω(n−1)

ω(n−1) · ω(n−1)
ω(n−1), k2 ∈ span{Ω(n−1)}. (2.12)

Firstly,

‖ >T (n)−1
k1‖ =

‖ >T (n)−1
ω(n−1)‖

|ω(n−1) · ω(n−1)| |k · ω
(n−1)| ≤ σn−1‖T (n)−1‖ ‖k‖ (2.13)

since k ∈ I+
n−1 and

‖ >T (n)−1
ω(n−1)‖

|ω(n−1) · ω(n−1)| =
1 + αn−1 + an

(1 + α2
n−1)‖T (n)−1‖‖T

(n)−1‖ ≤ ‖T (n)−1‖. (2.14)

Secondly, using

‖ >T (n)−1
k2‖ = αn−1

‖Ω(n)‖
‖Ω(n−1)‖‖k2‖, (2.15)

we get (2.10). ¤

3. Renormalization of vector fields

3.1. Definitions. The transformation of a vector field X on a manifold M by a diffeo-
morphism ψ : M → M is given by the so-called pull-back of X under ψ:

ψ∗X = (Dψ)−1X ◦ ψ.

As the tangent bundle of the 2-torus is trivial, TT2 ' T2 × R2, we identify the set
of vector fields on T2 with the set of functions from T2 to R2, that can be regarded
as maps of R2 by lifting to the universal cover. We will make use of the analyticity to
extend to the complex domain, so we will deal with complex analytic functions.

In the following, A ¿ B means ‘there is a constant C > 0 such that A ≤ CB’.
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3.2. Spaces of vector fields. Let ρ > 0 and consider the domain

Dρ = {x ∈ C2 : ‖ Im x‖ < ρ/2π}, (3.1)

for the norm ‖u‖ =
∑

i |ui| on C2. Take a Z2-periodic complex analytic function
f : Dρ → C2 on the form of the Fourier series

f(x) =
∑

k∈Z2

fke2πik·x,

with fk ∈ C2. The Banach spaces Aρ and A′
ρ are the subspaces such that the respective

norms

‖f‖ρ =
∑

k∈Z2

‖fk‖ eρ‖k‖, (3.2)

‖f‖′ρ =
∑

k∈Z2

(1 + 2π‖k‖) ‖fk‖ eρ‖k‖ (3.3)

are finite. A similar Banach space is composed by C-valued functions related to the
ones in Aρ. The norm | · |ρ on this space is related to ‖ · ‖ρ in the obvious way such that

‖f‖ρ =
∑2

i=1 |fi|ρ, where f = (f1, f2).
Some of the properties of the above spaces are of easy verification. For any f, g ∈ A′

ρ:

• |f · g|ρ ≤ ‖f‖ρ ‖g‖ρ,
• ‖f(x)‖ ≤ ‖f‖ρ ≤ ‖f‖′ρ where x ∈ Dρ,
• ‖f‖ρ−δ ≤ ‖f‖ρ with δ < ρ.

Let ω ∈ R2 − {0}. In the following, we will be studying vector fields of the form

X(x) = ω + f(x), x ∈ Dρ, (3.4)

where f ∈ Aρ.

3.3. Notion of analyticity. We will be using maps between Banach spaces over C with
a notion of analyticity stated as follows (cf. e.g. [8]): a map F defined on a domain is
analytic if it is locally bounded and Gâteaux differentiable. If it is analytic on a domain,
it is continuous and Fréchet differentiable. Moreover, we have a convergence theorem
which is going to be used later on. Let {Fk} be a sequence of functions analytic and
uniformly locally bounded on a domain D. If limk→+∞ Fk = F on D, then F is analytic
on D.

3.4. Spatial and time rescalings. The fundamental step of the renormalization is
a rescaling of the domain of definition of our vector fields. This is done by a linear
transformation coming essentially from the continued fraction expansion of ω = ω(0).
In addition, we perform a linear reparametrisation of time because the orbits take longer
to cross the new torus.

Let ρn−1 > 0 and fix an arbitrary vector field of the form

X(x) = ω(n−1) + f(x), x ∈ Dρn−1 , (3.5)

with f ∈ Aρn−1 , n ∈ N. Write the constant Fourier terms through the projection

Ef =

∫

T2

f(x)dx = f0. (3.6)

We are interested in the following coordinate and time changes:

Ln : x 7→ T (n)−1
x, t 7→ τn(f0)t, (3.7)
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where

τn(f0) =
ω(n) · ω(n)

ω(n) · EL∗nX
and EL∗nX = αn−1ω

(n) + T (n)f0. (3.8)

The vector field in the new coordinates is the image of the map

X 7→ Ln(X) = τn(f0) L∗nX.

That is, for x ∈ L−1
n Dρn−1 ,

Ln(X) = ω(n) + L̂n(f0) + L̃n(X) (3.9)

where

L̂n(f0) = τn(f0)(I− Pn)L∗nf0,

L̃n(X) = τn(f0)L
∗
n(f − f0),

(3.10)

where Pn stands for the projection of Aρn over ω(n).
Notice that Ln(c ω(n−1)) = ω(n), for any c 6= 0. Moreover, if the winding ratio X is

α−1
n−1, then the winding ratio of Ln(X) is α−1

n .

3.5. Far from resonance modes. Given σn > 0, we define the far from resonance
modes with respect to ω(n) to be the ones whose indices are in the cone I−n = Z2 − I+

n .
It is also useful to define the projections I+n and I−n by restricting the Fourier modes to
I+
n and I−n , respectively. The identity operator is I = I+n + I−n .

3.6. Improvement of analyticity. We now restrict to the set of f ∈ Aρn−1 such that

‖f0‖ ≤ αn−1βn−1|ω(n) · ω(n)|
(1 + βn−1)‖ >T (n)ω(n)‖ . (3.11)

So, we can estimate τn(f0) by

|τn(f0)| ≤
[
αn−1 −

∣∣∣∣
ω(n) · T (n)f0

ω(n) · ω(n)

∣∣∣∣
]−1

≤ 1 + βn−1

αn−1

. (3.12)

Proposition 3.1. If δ > 0 and

0 < ρ′n ≤
ρn−1

An−1

− δ, (3.13)

then L̃n as a map from I+n−1Aρn−1 into (I− E)A′
ρ′n

is continuous with

‖L̃n(X)‖ ≤ 2

(
1 +

2π

eδ

) ‖T (n)‖
αn−1

‖(I− E)X‖ρn−1 , (3.14)

for every X ∈ I+n−1Aρn−1

Proof. With X = ω(n−1) + f ∈ I+n−1Aρn−1 , the claim follows from

‖L̃n(X)‖′ρ′n ≤ |τn(f0)| ‖T (n)‖
∑

k∈I+
n−1−{0}

(
1 + 2π‖ >T (n)−1

k‖
)
‖fk‖eρ′n‖>T (n)−1

k‖

≤ 2(1 + 2πe−1δ−1)α−1
n−1‖T (n)‖

∑

k∈I+
n−1−{0}

‖fk‖ exp
[
(ρ′n + δ)‖ >T (n)−1

k‖
]

≤ 2(1 + 2πe−1δ−1)α−1
n−1‖T (n)‖

∑

k∈I+
n−1−{0}

‖fk‖ exp [(ρ′n + δ)An−1‖k‖]

≤ 2(1 + 2πe−1δ−1)α−1
n−1‖T (n)‖ ‖(I− E)f‖ρn−1 ,

(3.15)
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where we have used Lemma 2.1 and the inequality t ≤ (eδ)−1eδt, t ≥ 0. ¤

3.7. Estimate on the constant modes.

Proposition 3.2. Suppose that X = ω(n−1) +f ∈ Aρn−1 with winding ratio α−1
n−1. Then

‖L̂n(f0)‖ ≤ ‖L̃n(X)‖ρ′n .

Proof. We are going to show that, under the above hypothesis, Y = Ln(X) ∈ Aρ′n with
winding ratio α−1

n belongs to the subset

Cn =
{
Z ∈ Aρ′n : ‖(I− Pn) ◦ E (Z)‖ ≤ ‖(I− E)Z‖ρ′n

}
.

A set of vector fields Dn that do not cross the line spanned by ω(n) can be of the
form:

Dn =
{
Z ∈ Aρ′n : ‖Z(x)− EZ‖ < ‖(I− Pn) ◦ E (Z)‖,x ∈ Dρ′n

}
.

The slopes of all the vectors Y (x) are bigger than α−1
n or always less than α−1

n , never
crossing that value (as for their respective winding ratio). Since ‖Y (x) − EY ‖ ≤
‖(I−E)Y ‖ρ′n for every x ∈ Dρ′n , the complementary set of Dn, contained in Cn, includes

all (but not only) vector fields with the same winding ratio as ω(n). ¤

3.8. Cut-off of the analyticity strip. Let 0 < ρ′′n < ρ′n. Consider the inclusion
operator In : A′

ρ′n
→ A′

ρ′′n
by restricting X ∈ A′

ρ′n
to a smaller domain X|Dρ′′n ∈ A′

ρ′′n
.

Proposition 3.3. If

0 < C < ‖T (n)‖/(σ2
nαn−1) and 0 < ρ′′n ≤ ρ′n − log(‖T (n)‖/Cσ2

nαn−1),

then

‖In(I− E)‖ ≤ Cσ2
nαn−1‖T (n)‖−1.

Proof. The assertion follows immediately. ¤

3.9. Elimination of far from resonance modes. The theorem below (to be proven
in Section A.1) states the existence of a nonlinear change of coordinates isotopic to
the identity, that gives a new vector field without far from resonance I−n modes. That
is, the vector field contains only resonant modes. The fact that we are restricting the
eliminattion to the far from resonance modes avoids dealing with the usual problems
related to small divisors.

For given ρn, ε, ν > 0, denote by Vε the open ball in A′
ρn+ν centred at ω(n) with radius

ε.

Theorem 3.4. Let σn < ‖ω(n)‖ and

εn =
σn

42
min

{
ν

4π
,

σn

72‖ω(n)‖
}

. (3.16)

For all X ∈ Vεn there exists an isotopy Ut = Id +ut : Dρn → Dρn+ν, t ∈ [0, 1], of analytic
diffeomorphisms in A′

ρn
satisfying

I−n U∗
t (X) = (1− t) I−n X, U0 = Id . (3.17)

This defines the maps

Ut : Vεn → A′
ρn

X 7→ Ut
(3.18)
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and

Ut : Vεn → I+nAρn ⊕ (1− t)I−nA′
ρn+ν

X 7→ U∗
t (X)

(3.19)

which are analytic, and satisfy the inequalities

‖Ut(X)− Id ‖′ρn
≤42t

σn

‖I−n X‖ρn

‖Ut(X)− ω(n)‖ρn ≤(3− t)‖X − ω(n)‖′ρn+ν .

(3.20)

If X is real-analytic, then Ut(X)(R2) ⊂ R2.

3.10. Renormalization scheme. A convenient choice for the width of the resonance
cones I+

n is

σn =
αnβn‖Ω(n+1)‖

‖T (n+1)−1‖ ‖Ω(n)‖ , n ∈ N ∪ {0}. (3.21)

Define Bn by the product
Bn = A0 . . . An, (3.22)

where Ak ≤ αk(1 + βk)‖Ω(k+1)‖ ‖Ω(k)‖−1 as in Lemma 2.1. Hence, we have constants
c1, c2 > 0 (independent of n) yielding

c1 ≤ Bn

βn

≤ c1

n∏
i=0

(1 + βi) ≤ c2. (3.23)

Therefore, using (2.6) and (2.8), α ∈ BC iff

+∞∑
i=1

Bi−1 log

( ‖T (i)‖
σ2

i αi−1

)
< +∞. (3.24)

Fix δ and ν as in Proposition 3.1 and Theorem 3.4, respectively. For ρ0 > 0 and some
sufficiently small constant C > 0 (to be chosen later and depending only on δ and ν),
take the sequence

ρn =
1

Bn−1

[
ρ0 −

n∑
i=1

Bi−1 log

( ‖T (i)‖
Cσ2

i αi−1

)
−

n∑
i=1

Bi−1(ν + δ)

]
. (3.25)

Define now the function

B(α) =
+∞∑
i=1

Bi−1 log

(‖T (i)‖eν+δ

Cσ2
i αi−1

)
. (3.26)

This means that α ∈ BC iff B(α) < +∞. So, if ρ0 > B(α), there exists R > 0 such that

ρn ≥ R

βn−1

. (3.27)

The one-step renormalization operator is

Nn = Un ◦ In ◦ Ln, n ∈ N, (3.28)

where Un is the full elimination of the modes in I−n as in Theorem 3.4 (for t = 1). The
n-th step renormalization operator is thus

Rn = Nn ◦ · · · ◦ N1, n ∈ N,

which is analytic in its domain. Notice that Nn(ω(n−1) + v) = ω(n), for every v ∈ C2.
Also, in case a vector field X is real-analytic, the same is true for Nn(X) and Rn(X).
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3.11. Trivial limit of renormalization.

Theorem 3.5. Let α ∈ BC and ρ0 > B(α). If X ∈ I+0 Aρ0 has winding ratio α−1, then,
for all n ∈ N, X is in the domain of Rn and

‖Rn(X)−Rn(ω)‖ρn ≤ Θn‖X − ω‖ρ0 , (3.29)

where Θn = β4
n

∏n
i=0 β2

i .

Proof. If n = 1,

‖I1L1(X)− ω(1)‖′ρ1+ν ≤ ‖I1(I− E)L1(X)‖′ρ1+ν + ‖L̂1(X)‖
and, using Lemma 3.2, ‖L̂1(X)‖ ≤ ‖I1(I− E)L1(X)‖′ρ1+ν . So, from Proposition 3.3,

‖I1(I− E)L1(X)‖′ρ1+ν ≤ φ−1
1 ‖(I− E)L1(X)‖′ρ1+ν+log(φ1) (3.30)

where φ1 = ‖T (1)‖/(Cσ2
1α). Now, Proposition 3.1 yields that

‖(I− E)L1(X)‖′ρ1+ν+log(φ1) ≤ 2

(
1 +

2π

eδ

) ‖T (1)‖
α

‖(I− E)X‖(φ1+δ)A0 .

The estimate (3.30) and a sufficiently small choice of C > 0 (depending only on δ and
ν which are fixed) guarantees I1L1(X) to be in the domain of U1. By (3.20),

‖U1I1L1(X)− ω(1)‖ρ1 ≤ 2‖I1L1(X)− ω(1)‖′ρ1+ν .

Since (φ1 + δ)A0 = ρ0 and ‖(I− E)X‖ρ0 ≤ ‖X − ω‖ρ0 , we then get

‖R1(X)−R1(ω)‖ρ1 ≤ 8C

(
1 +

2π

eδ

)
α2

1β
2
1‖Ω(2)‖2

‖T (2)−1‖2‖Ω(1)‖2
‖X − ω‖ρ0

proving (3.29) for n = 1 with a choice of a constant C.
For n ∈ N, suppose that (3.29) is satisfied for n − 1 and denote Xn−1 = Rn−1(X) ∈

I+n−1Aρn−1 . Then, similarly to the above case, (3.11) together with Propositions 3.1, 3.2

and 3.3, can be used to estimate InLn(Xn−1) − ω(n) of the order of Θn, which implies
that it is inside the domain of Un (using an appropriate choice of the constant C). It
remains to use (3.20). ¤

We can generalise the above result for X sufficiently close to ω in Aρ0+ν and not
necessarily with only resonant modes, by using an initial operator U0 and applying
Theorem 3.5 to U0(X).

3.12. Small strips. We recover the large strip case by using an initial transformation
XN = UNLn . . .U1L1(X) so that XN ∈ I+NAρN

with

ρN =
1

BN−1

[
ρ0 −

N∑
i=1

Bi−1(ν + δ)

]
,

and a fixed choice of δ and ν such that ρN > 0 for N ∈ N. For that consider a large
enough N and X−ω sufficiently small such that XN verifies the conditions of Theorem
3.5, i.e. ρN = O(β−1

N−1) gives a large strip. We need to check that we can find N such
that ρN > B(αN). This follows from

B(αN) =
1

BN−1

[
B(α)− BN(α)−

+∞∑
i=N+1

Bi−1 log
(
β−2

N−1

)
]

,

where BN(α) is the sum of the first N terms of B(α). Notice that limN→+∞ BN(α) =
B(α) and B(αN) > 0 for all N . Thus, ρN > B(αN) for N large enough.
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4. Analytic conjugacy to linear flow

As a consequence of Theorem 3.5, we obtain an analytic conjugacy between the flow
generated by X and the linear flow, thus proving Theorem 1.1.

Consider the set ∆α ⊂ I+0 Aρ0 inside the domain of Rn for all n ∈ N, whose elements
have winding ratio α−1. By taking X ∈ ∆α, we denote Xn = Rn(X) ∈ I+nAρn so that

Xn = ξn(X) (L1 ◦ U1 · · ·Ln ◦ Un)∗(X), (4.1)

where Uk = Uk(X) = Uk(IkLk(Xk−1)) is given by the analytic map in Theorem 3.4 for
t = 1 at the k-th step, and

ξn(X) = τn(EXn−1) . . . τ1(EX). (4.2)

Notice that if Xn = ω(n) for some n ∈ N, X is analytically conjugated to ω(n).
Now, for each X, define the isotopic to the identity analytic diffeomorphism

Wn(X) = P (n)−1 ◦ Un(X) ◦ P (n), (4.3)

on P (n)−1Dρn . If X is real-analytic, then Wn(X)(R2) ⊂ R2, since this property holds
for Un(X). We also have Wn(ω) = Id.

Take a sequence Rn > 0 such that Rn‖P (n)‖ ≤ ρn, there exist constants R, R′ satis-
fying

0 < R ≤ Rn ≤ R′ < +∞
and, for some 0 < c1 < 1 and c2 > 0,

Rn−1 −Rn > c2Θ
c1
n . (4.4)

Lemma 4.1. There is an open ball B ⊂ ∆α about ω such that, for all n ∈ N, Wn : B →
ARn is analytic, satisfies Wn(X) : DRn → DRn−1 and

‖Wn(X)− Id ‖Rn ≤ cΘc′
n‖X − ω‖ρ, X ∈ B, (4.5)

with some constants c, c′ > 0.

Proof. For any X ∈ ∆α, in view of (3.20), we get

‖Wn(X)− Id ‖Rn = ‖P (n)−1 ◦ [Un(X)− Id] ◦ P (n)‖Rn

¿ σ−1
n ‖P (n)−1‖ ‖InLn(Xn−1)− ω(n)‖ρn .

We can bound the above as in (4.5) for some c, c′ > 0.
We shall choose a small enough open ball B about ω in ∆α, such that, for all n ∈ N

and appropriate choices of c1 and c2 with c′ > c1,

‖X − ω‖ρ <
Rn−1 −Rn

2πcΘc′
n

, X ∈ B.

Therefore, for x ∈ DRn and X ∈ B,

‖ Im Wn(X)(x)‖ ≤ ‖ Im(Wn(X)(x)− x)‖+ ‖ Im x‖
< ‖Wn(X)− Id ‖Rn + Rn/2π < Rn−1/2π.

So we have Wn(X) : DRn → DRn−1 and Wn(X) ∈ ARn . From the properties of Un, Wn

is analytic. ¤



10 J LOPES DIAS

Consider the analytic map Hn : B → ARn defined by the coordinate transformation
Hn(X) : DRn → Dρ0 as

Hn(X) = W1(X) ◦ · · · ◦Wn(X). (4.6)

In addition, take the analytic map ηn : B → C given by

ηn(X) = βn−1ξn(X). (4.7)

Lemma 4.2. There exists c, c′ > 0 such that for X ∈ B and n > 1,

‖Hn(X)−Hn−1(X)‖Rn ≤ cΘc′
n‖X − ω‖ρ,

|ηn(X)− ηn−1(X)| ≤ cβn−1.
(4.8)

Proof. For each k = 1, . . . , n− 1, consider the transformations

Gk(z, X) =(Wk(X)− Id) ◦ (Id +Gk+1(z, X)) + Gk+1(z, X),

Gn(z, X) =z(Wn(X)− Id),

with (z,X) ∈ {z ∈ C : |z| < 1 + dn} ×B, where we have constants c′, c′′ > 0 such that

dn =
c′′

Θc′
n‖X − ω‖ρ

− 1 > 0.

If the image of DRn under Id +Gk+1(z, X) is inside the domain of Wk(X), or simply

‖Gk+1(z, X)‖Rn ≤ (Rk −Rn)/2π,

then Gk is well-defined as an analytic map into ARn , and

‖Gk(z, X)‖Rn ≤ ‖Wk(X)− Id ‖Rk
+ ‖Gk+1(z, X)‖Rn .

An inductive scheme shows that

‖Gn(z, X)‖Rn ≤(Rn−1 −Rn)/2π,

‖Gk(z, X)‖Rn ≤
n−1∑

i=k

‖Wi(X)− Id ‖Ri
+ |z| ‖Wn(X)− Id ‖Rn

≤(Rk−1 −Rn)/2π.

By Cauchy’s formula

‖Hn(X)−Hn−1(X)‖Rn = ‖G1(1, X)−G1(0, X)‖Rn

=

∥∥∥∥
1

2πi

∮

|z|=1+dn/2

G1(z, X)

z(z − 1)
dz

∥∥∥∥
Rn

,

and

‖Hn(X)−Hn−1(X)‖Rn ≤
2

dn

sup
|z|=1+dn/2

‖G1(z, X)‖Rn

¿ Θc′
n‖X − ω‖ρ.

Finally, we have

|ηn(X)− ηn−1(X)| = βn−2|αn−1τn(EXn−1)− 1| |ξn−1(X)|

≤ βn−1

n∏
i=1

(1 + βi−1) ¿ βn−1.
(4.9)

¤
Denote by Diffper the set of Z2-periodic diffeomorphisms and consider the same norm

as ‖ · ‖r.
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Lemma 4.3. There exist an open ball B′ ⊂ B about ω, H : B′ → Diffper(DR,C2) and
η : B′ → C such that for X ∈ B′, H(X) = limn→+∞ Hn(X), η(X) = limn→+∞ ηn(X)
and

‖H(X)− Id ‖R ≤ c‖X − ω‖ρ, |η(X)− 1| ≤ c‖X − ω‖ρ, (4.10)

for some c > 0. If X ∈ B′ is real-analytic, then H(X) ∈ Diffω
per(R2,R2) and η(X) ∈ R.

Proof. Lemma 4.2 implies the existence of the limit Hn(X) → H(X) as n → +∞, for
each X in a sufficiently small ball B, in the space Diffper(DR,C2) which is closed when
restricting to sufficiently close to identity diffeomorphisms. Moreover, ‖H(X)−Id ‖R ¿
‖X−ω‖ρ. The same can be said about η(X). The convergence of Hn and ηn is uniform
in B′ so H and η are analytic. The fact that, for real-analytic X, H(X) and η(X)
take real values for real arguments, follows from the same property of each Wn(X) and
τn(EX). ¤

Lemma 4.4. For every X ∈ B′, η(X) H(X)∗(X) = ω on DR.

Proof. For each n ∈ N the definition of Hn(X) and (4.1) imply that

Hn(X)∗(X) = ξn(X)−1P (n)∗(Xn). (4.11)

Since ξn(X)−1P (n)−1
ω(n) = ηn(X)−1ω, the r.h.s. of (4.11) can be written as

ηn(X)−1ω + ξn(X)−1P (n)∗(Xn − ω(n)). (4.12)

The second term can be estimated by

sup
x∈DR

‖ξn(X)−1P (n)∗(Xn − ω(n))(x)‖ ≤ |ξn(X)−1| ‖P (n)−1‖ ‖Xn − ω(n)‖ρn

¿ Θn‖X − ω‖ρ.
(4.13)

Using the convergence of Hn and ηn, we complete the proof. ¤

Appendix A. Elimination of modes

A.1. Homotopy method. In this section we prove Theorem 3.4 using a homotopy
method. The proof is essentially the same of [14], we include it here for completeness.

As n is fixed, we will drop it from our notations. Also, write ρ′ = ρn and ρ = ρ′ + ν.
First, we include a technical lemma that will be used below.

Lemma A.1. Let f ∈ A′
ρ. If U = Id +u where u : Dρ′ → D(ρ−ρ′)/2 is in Aρ′ and

‖u‖ρ′ < (ρ− ρ′)/4π, then

• ‖f ◦ U‖ρ′ ≤ ‖f‖(ρ+ρ′)/2,
• ‖Df ◦ U‖ ≤ ‖f‖′(ρ+ρ′)/2,

• ‖f ◦ U − f‖ρ′ ≤ ‖f‖′(ρ+ρ′)/2 ‖u‖ρ′,

• ‖Df ◦ U −Df‖ ≤ 4π
ρ−ρ′‖f‖′ρ ‖u‖ρ′.

The proof of these inequalities is straightforward and thus will be omitted. Now,
assume that

δ = 42ε/σ < 1/2.

For vector fields in the form X = ω+f , consider f to be in the open ball E in A′
ρ centred

at the origin with radius ε. The coordinate transformation U is written as U = Id +u,
with u in

B =
{
u ∈ I−A′

ρ′ : u : Dρ′ → Dρ, ‖u‖′ρ′ < δ
}

.
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Notice that we have

I−U∗(X) = I−(DU)−1(ω + f ◦ U)

= (I−(I + Du)−1(ω + f ◦ U).

Define the operator F : B → I−Aρ′ ,

F (u) = I−(I + Du)−1(ω + f ◦ U). (A.1)

F (u) takes real values for real arguments whenever u has that property. It is easy to
see that the derivative of F at u is the linear map from I−A′

ρ′ to I−Aρ′ :

DF (u) h = I−(I + Du)−1[Df ◦ U h (A.2)

−Dh (I + Du)−1 (ω + f ◦ U)].

We want to find a solution of

F (ut) = (1− t)F (u0), (A.3)

with 0 ≤ t ≤ 1 and “initial” condition u0 = 0. Differentiating the above equation with
respect to t, we get

DF (ut)
dut

dt
= −F (0). (A.4)

Proposition A.2. If u ∈ B, then DF (u)−1 is a bounded linear operator from I−Aρ′ to
I−A′

ρ′ and

‖DF (u)−1‖ < δ/ε.

From the above proposition (to be proved in Section A.2) we integrate (A.4) with
respect to t, obtaining the integral equation:

ut = −
∫ t

0

DF (us)
−1 F (0) ds. (A.5)

In order to check that ut ∈ B for any 0 ≤ t ≤ 1, we estimate its norm:

‖ut‖′ρ′ ≤ t sup
v∈B

‖DF (v)−1F (0)‖′ρ′
≤ t sup

v∈B
‖DF (v)−1‖ ‖I−f‖ρ′ < tδ‖f‖ρ′/ε,

so, ‖ut‖′ρ′ < δ. Therefore, the solution of (A.3) exists in B and is given by (A.5).
Moreover, if X is real-analytic, then ut takes real values for real arguments.

It is now easy to see that

U∗
t (X)− ω = I+

∑
n≥2

(−D(Ut − Id))nω + I+U∗
t f + (1− t)I−f.

So, using Lemma A.1,

‖U∗
t (X)− ω‖ρ′ ≤ 1

1− ‖ut‖′ρ′
(‖ω‖ ‖ut‖′ρ′2 + ‖f‖ρ) + (1− t)‖f‖ρ′

<
1

1− δ

(
δ2‖ω‖‖f‖ρ′/ε

2 + 1
) ‖f‖ρ + (1− t)‖f‖ρ′

<

[
1

1− δ

(
δ2‖ω‖

ε
+ 1

)
+ 1− t

]
‖f‖′ρ.

Moreover, ‖U∗
t (X)− ω − I+f − (1− t)I−f‖ρ′ = O(‖f‖2

ρ), hence the derivative of X 7→
U∗

t (X) at ω is I− tI−.
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A.2. Proof of Proposition A.2.

Lemma A.3. If ‖f‖′ρ < ε < σ/4, then

DF (0)−1 : I−Aρ′ → I−A′
ρ′

is continuous and

‖DF (0)−1‖ <
2

σ − 4‖f‖′ρ
.

Proof. From (A.2) one has

DF (0) h = I−(f̂ −Dω) h

= −
(
I− I−f̂ D−1

ω

)
Dω h,

where f̂ h = Df h − Dhf and Dω h = Dh ω. Thus, the inverse of this operator, if it
exists, is given by

DF (0)−1 = −D−1
ω

(
I− I−f̂ D−1

ω

)−1

.

The inverse of Dω is the linear map from I−Aρ′ to I−A′
ρ′ :

D−1
ω g(x) =

∑

k∈I−

gk

2πi(k · ω)
e2πik·x,

and is well-defined by the definition of I−. So,

‖D−1
ω g‖′ρ′ <

∑

k∈I−

1 + 2π‖k‖
2πσ‖k‖ ‖gk‖eρ′‖k‖

≤ 2

σ
‖g‖ρ′ .

Hence, ‖D−1
ω ‖ < 2/σ. It is possible to bound from above the norm of f̂ : I−A′

ρ′ → Aρ′

by ‖f̂‖ ≤ 2‖f‖′ρ′ . Therefore,

‖I−f̂ D−1
ω ‖ <

4

σ
‖f‖′ρ′ < 1,

and ∥∥∥∥
(
I− I−f̂ D−1

ω

)−1
∥∥∥∥ <

σ

σ − 4‖f‖′ρ′
.

The statement of the lemma is now immediate. ¤
Lemma A.4. Given u ∈ B, the linear operator DF (u) − DF (0) mapping I−A′

ρ′ into
I−Aρ′, is bounded and

‖DF (u)−DF (0)‖ <
‖u‖′ρ′

1− ‖u‖′ρ′

[(
4π

ρ− ρ′
+

4− 2‖u‖′ρ′
1− ‖u‖′ρ′

)
‖f‖′ρ +

2− ‖u‖′ρ′
1− ‖u‖′ρ′

‖ω‖
]

.

Proof. The formula (A.2) gives

[DF (u)−DF (0)] h = I−(I + Du)−1 [Df ◦ U h− (I + Du)Df h

−Dh (I + Du)−1(ω + f) ◦ U

+(I + Du)Dh (ω + f)]

= I−(I + Du)−1{A + B + C},
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where

A = [Df ◦ U −Df −Du Df ] h

B = DuDh (ω + f)

C = −Dh (I + Du)−1 [f ◦ U − f −Du (ω + f)] .

Using Lemma A.1,

‖A‖ρ′ ≤
(

4π

ρ− ρ′
‖f‖′ρ‖u‖ρ′ + ‖f‖′ρ′‖u‖′ρ′

)
‖h‖ρ′ ,

‖B‖ρ′ ≤ (‖ω‖+ ‖f‖ρ′) ‖u‖′ρ′‖h‖′ρ′ ,
‖C‖ρ′ ≤ 1

1− ‖u‖′ρ′
[‖f‖′(ρ+ρ′)/2‖u‖ρ′ + ‖u‖′ρ′ (‖ω‖+ ‖f‖ρ′)

] ‖h‖′ρ′ .

¤
To conclude the proof of Proposition A.2, notice that

‖DF (u)−1‖ ≤ (‖DF (0)−1‖−1 − ‖DF (u)−DF (0)‖)−1

<

{
σ

2
− 2ε− δ

1− δ

[(
4π

ρ− ρ′
+

4− 2δ

1− δ

)
ε +

2− δ

1− δ
‖ω‖

]}−1

<
δ

ε
.

The last inequality is true if

ε < δ

[
σ

2
− 2δ

(1− δ)2
‖ω‖

] [
1 + 2δ +

δ2

1− δ

(
4π

ρ− ρ′
+

4− 2δ

1− δ

)]−1

with a positive numerator N and denominator D in the r.h.s. This is so for our choices
of ε and δ < 1

2
, by observing that

2δ

(1− δ)2
‖ω‖ < 12δ‖ω‖ <

σ

4
,

so that N > δσ/4, D < 7 and finally ε ≤ σ2

42‖ω‖ < σ
42

< N/D.
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